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HISTORY AND AIMS OF THE PME GROUP

PME came into existence at the Third International Congress on

Mathematical Education (1CME 3) held in Karlsruhe, Germany, in

1976. It is affiliated with the International Commission for

Mathematical Instruction.

The major goals of the Group and of the North American Chapter

(PME-NA) are:

1. To promote international contacts and the exchange of

scientific information in the psychology of mathematics

education;

2. To promote and stimulate interdisciplinary research in the

aforesaid area with the cooperation of psychologists,

mathematicians and mathematics teachers;

3. To further a deeper and better understanding of the

psychological aspects of teaching and learning mathematics

and the implications thereof.
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Editor's Preface

The program for the 16th Annual Conference of PME-NA was established

through the active participation of the Program Committee during the year leading

up to the 1994 meeting. There were three invited session themes. Reification in

Secondary and K-12 Education was selected to serve as a bridge between

mathematicians and mathematics educators within the PME-NA family. This

theme was addressed in a plenary session jointly presented by Anna Sfard,

Hebrew University in Jerusalem, and Patrick Thompson, San Diego State

University. Situated Cognition Theory was selected as a theme to explore

philosophical and epistemological concerns that have been important to the PME

and PME-NA community for a number of years. This theme was addressed in a

second plenary session delivered by Tony Whitson, University of Delaware, with

Judit Moschkovitch of the Institute for Research on Learning, in Palo Alto CA,

serving as discussant. The final invited theme, Rational Number Concepts, was

addressed in an invited discussion group organized by Thomas Kieren, University

of Alberta. This discussion group used a new format in which the membership

was invited to submit one page synopses of positions and views of rational number

concepts to Dr. Kieren to be orchestrated into the discussion group session.

These one page synopses are included in the Proceedings.

A special feature of the 1994 meeting were the Technology Focus Groups

organized by James J. Kaput, University of Massachusetts, North Dartmouth.

Each conference registrant was invited to participate in one of ten such groups in

which developers of technology-based mathematics learning environments led

investigations into problermi in the psychology of mathematics education that arise
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in such learning environments. The groups met for a three or four hour block of

time in a computer laboratory on the Louisiana State University campus. Our

purpose in this session format was to broaden the base of understanding within

the mathematics education community of the problems and possibilities of

technological innovation. One page synopses of these groups are included.

The 67 research reports, 16 short oral reports, and 28 posters that

constituted the main body of the conference program span a variety of issues and

are organized topically within these Proceedings. This is a change from previous

PME-NA proceedings in which only research reports were organized topically.

Additionally one symposium and 5 discussion groups were presented, and

synopses of these are included in the Proceedings. Proposals for all sessions

were reviewed by three reviewers with expertise in the area of the submission.

Cases of disagreement among the reviewers were resolved in a meeting of the

Program Committee in New Orleans in April of 1993. This procedure resulted in

the rejection or reassignment of about 20% of the proposals.

Thanks are due to all participants in PME-NA XVI, but especially to the

Executive and Program Committees, to the reviewers, to the LSU University

community for use of computer laboratories, to Dean Larry Pierce of the College

of Education and to Dr. Neil Mathews, Chair of the Department of Curriculum &

Instruction for their support of conference activities, to Kathy Carroll for technical

ccordination of the proceedings, to Doug Bourgeois and Brandy Baechle of LSU

Conference Services for their tireless work, and to Clint Kaufmann for his valuable

assistance.
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Problems of Reification: Representations and Mathematical Objects

Anna Sfard Patrick W. Thompson
Hebrew University, Israel San Diego State University, USA

Had Bishop Berkeley, as many fine minds before and after him, not criticized the ill-

defined concept of infinitesimal, mathematical analysis one of the most elegant theories

in mathematics --- could have not been born. On the other hand, had Berkeley launched his

attack through Internet, the whole foundational effort might have taken a few decades rather

than and one-half centuries. This is what we were reminded of when starting our

discussion. Like Berkeley, we were dealing with a theory that works but is still in a need of

better founations. Unlike Berkeley and those after him, we had only a few months to

finish, and we had e-mail at our disposal.

Needless to say, the theory we were concerned with, called reification, was nothing

as grandiose and central as mathematical analysis. It was merely one of several recently-

constructed frameworks for investigating mathematical learning and problem solving. The

example of Bishop Berkeley taught us there is nothing more fruitful than a good

disagreement. Thus, we decided to play roles, namely to agreed to disagree. Since we are,

in fact, quite close to each other in our thinking, we sometimes had to polarize our

positions for the sake of a better argument.

The subject proved richer and more intricate than we could dream. Inevitably, our

discussion led us to places we did not plan to visit. When scrutinizing the theoretical

constructs, we often felt forced to go meta-theoretical and tackle such basic quandaries as

what counts as acceptable theory or why we need theory at all.

Above all, we enjoyed ourselves. We also believe it was more than fun, and we hope

we made some prOgless. Whether we did, and whether our fun may be shared with others,

is for you to judge.

Pat:

The following excerpt appears in Research in Collegiate Mathematics Education. In it
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I speak about the "fiction" of multiple-representations of functionI do not speak about

reification as such. However, I think what I said about functions is applicable in the more

general case of reification, too: That we experience the subjective sense of "mathematical

object" because we build abstractions of representational activity in specific contexts and

form connections among those activities by way of a sort of "semantic identity." We

represent to ourselves aspects of (what we take to be) the same situation in multiple ways,

and we come to attribute logical identity to our representations because we feel they

somehow represented the "same thing."

A number of fuzzies are entailed in what I said above, such as matters of scheme and

matters of abstraction. I'm sure these will come out as we go along.

I believe that the idea of multiple representations, as currently construed,
has not been carefully thought out, and the primary construct needing
explication is the very idea of representation.' Tables, graphs, and
expressions might be multiple representations of functions to us, but I have
seen no evidence that they are multiple representations of anything to
students. In fact, I am now unconvinced that they are multiple
representations even to us, but instead may be areas of representational
activity among which, as Moschkovich, Schoenfeld, and Arcavi (1993)
have said, we have built rich and varied connections. It could well be a
fiction that there is any interior to our network of connections, that our
sense of "common referent" among tables, expressions, and graphs is just
an expression of our sense, developed over many experiences, that we can
move from one type of representational activity to another, keeping a current
situation somehow intact. Put another way, the core concept of "function" is
not represented by any of what are commonly called the multiple
representations of function, but instead our making connections among
representational activities produces a subjective sense of invariance,

I do not make these statements idly, as I was one to jump on the multiple-
representations bandwagon early on (Thompson, 1987, 1989), and I am
now saying that I was mistaken. I agree with Kaput (1993) that it may be
wrongheaded to focus on graphs, expressions, or tables as representations
of function, but instead focus on them as representations of something that,
from the students' perspective, is representable, such as some aspect of a
specific situation. The key issue then becomes twofold: (1) To find
situations that are sufficiently propitious for engendering multitudes of
representational activity and (2) Orient students to draw connections among
their representational activities in regard to the situation that engendered
them.

(Thompson, 1994b, pp. 39-40)

1 This is entirely parallel to the situation in information processing psychologyno one has bothered to
question what is meant by "information" (Cobb, 1987; Cobb, 1990).
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Anna:

How daring, Pat! After all, the idea you seem to be questioning is quite pivotal to the

research in math education right now. A comparable move for a physicist would be to say

that he or she doubts the soundness of the concept of force or energy. Indeed, what can be

more central to our current educational project than the notion of representation? What

could be more fundamental to our thinking about the nature of mathematical learning than

the idea of designating mathematical entities in multiple ways? Your skepticism does not

sound politically correct, I'm afraid. But , I'm glad you said this. In fact, I have had my

doubts about the "careless" way people use the notion of representation for quite a long

time now. Obviously, when one says that this and that are representations, one implies that

there exists a certain mind-independent something that is being represented. Not many

people, however, seem to have given a serious thought to the question what this something

is and where it is to be found.

Some methodological clarifications could be in point before we go any further. I

remember the discussion that developed in August 1993, when Jim Kaput decided to

forward your blasphemous statement to his Algebra Working Group.2 Many people

responded then to the challenge, but my impression was that each one of them attacked a

different issue, and everybody was looking at the problem from a different perspective.

Somehow, the disputants seemed to be talking past each other rather than disagreeing. For

example, David Kirshner interpreted your statement as a rejection of introspection. He said:

Amen to Pat!

I am deeply supportive of perspectives that challenge the presumed
connection between our introspections about our knowledge and the actual
underlying representations. Understanding consciousness as a mechanism
that allows us to maintain a coherent picture of ourselves for the purposes of
interacting within a social milieu, shows introspection as an extremely
unreliable guide to our actual psychology ...

Thus, for David your message was mainly methodological: it dealt with internal rather

than external representations and with the problem of how to investigate these

2 The Algebra Working Group is an affiliation of mathematics educators who communicate regularly via
Internet on matters pertaining to learning and teaching algebraic reasoning at all grade levels. The AWG is
managed by Dr. James Kaput, JKAPUT@UMASSD.EDU, under the auspices of the University of
Wisconsin's National Center for Research in Mathematical Sciences Education.
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representations rather than with the question of the existence and the nature of their

referents. Ed Dubinsky, on the other band, understood the issue as mainly epistemological.

While taking the use of the term "representation" for granted, Ed translated your dilemma

into the question how we come to know and how we construct our knowledge:

I think that Pat raised ... the epistemological question of existence and
representation. No one seems to have trouble with various forms of
representational activities, but if one speaks of representation as a verb, then
its transitivity forces one to ask the question what is being represented.
Actually, Pat is asking the deeper question, is anything being represented?

Although these two interpretations are miles apart, they seem to share a tacit

ontological assumption. This assumption was also quite clear in the language you used

yourself. As I already noted, the very term "representation" implies that it makes sense to

talk about an independent existence of certain entities which are being represented. The

expression "multiple representation" remains meaningless unless we believe that there is a

certain thing that may be described and expressed in many different ways. I am concerned

about the fact that the discussion whether this implication should be accepted or rejected

took off before the disputants explained what kind of "existence" each one of them had in

mind. One may agree or disagree with the claim about the existence of mathematical

objects, but if the meaning of the world "existence" in this particular context is not made

explicit, our discourse will never rise above the level of a mere word game.

Let me present you with two options (by no means exclusive). First, it seems to me

that the default interpretation of,the whole issue would be as follows: we should view our

problem philosophically rather than psychologically, and the Objectivist outlook should be

taken as a point of departure. Let me explain.

Objectivism was defined by the American philosopher Putnam as a view grounded in

two assumptions:

1. there is a clear distinction to be drawn between the properties things have
"in themselves" and the properties which are "projected by us;"

2. the fundamental science ... tells us what properties things have "in
themselves." (Putnam, 1987, p. 13)

In this description, Putnam refers to science rather than to mathematics. In the case of
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mathematics, the problem is somewhat more difficult, as the distinction between the

knowledge and the object of this knowledge is much less clear than in the case of physics

or biology. Even so, the very fact that representation is a central motif of our discourse

shows that we do view the mathematical realm as independent from the way we think or

talk about it.

An alternative position would be psychological, and not philosophical. We could

concentrate on what people have in mind and disregard the problem of the "objective"

existence of mind- independent abstract entities. But then, of course, the question must be

answered what we have in mind when we talk about things "that people have in mind." Did

you notice the circularity in this last sentence? It seems we cannot escape it, just as we

cannot escape talking about mind. A truly sticky issue, isn't it?

Pat:

A sticky issue indeed!

Let me, for the moment, side-step the philosophical matters you raised and speak

about my motive for saying what I did. My motive was pedagogical. The multiple-

representations movement often translated into a particular kind of instruction or a particular

kind of curriculum: Show students several representations and tell them what they mean

or worse, have them "discover" what they mean. To the person doing the showing, the

representations always represented somethinga function, a structure, a concept, etc. That

is, the person doing the showing has an idea in mind, and presents to students something

that (to the person doing the showing) has that idea as its meaning. This creates an

impenetrable loopimpenetrable by students, that is. So, the background motivation for

my opening statement was largely pedagogical, and its thrust was psychological. I was

calling for taking students' reasoning and imagery as preferred starting points for

discussions of curriculum and pedagogy instead of taking (fictitiously) unitary constructs,

like function (or division, fraction, rational number, etc.), as preferred starting points.

I hope you don't interpret these remarks as saying that we must abandon adult

mathematics and be satisfied with whatever mathematics children create. Rather, I was

saying that we must be more clever. Rather than teaching the mathematics we know, we
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should understand students' construction of concepts from their assimilations and

accommodations over long periods of time, and to be open to the realization that what

students end up knowing never will be a direct reflection of what we teach. Neither David

nor Ed, in the AWG excerpts you presented earlier, picked up on the last paragraph in my

opening statement that we cease our fixation with representations of (our) big ideas and

instead focus on having students use signs and symbols only when they (students) have

something to say through them (symbols).

I propose that we force ourselves to speak in the active voicethat when we speak of

a representation, we always speak of to whom it is a representation and what we imagine it

represents for them. When we speak of, say, "tables as representations of functions," we

say for whom we imagine this to be true, what we imagine it represents for them (the idea

they are expressing in a table when producing it, or the meaning they are reading from the

table if it is presented to them), and something about the context in which this is all

happening.

What, you ask, does this have to do with reification? It is this: Whenever I observe

people doing mathematics and constrain myself to speak in the active voice, and constrain

myself to be precise in my use of "representation," I don't see objects in people's thinking.

Instead, I see schemes of operations and webs of meaning. Sometimes these schemes are

ill-formed or in the process of formation. Sometimes they are well-formed and highly

integrated. In the latter case, the people possessing these schemes maintain that they are

thinking of "mathematical objects."

Anna, your turn!

Anna:

Easier said than done, Pat.

When you insist that we should "cease our fixation with (our) big ideas and instead

focus on having students use signs and symbols only when they (students) have something

to say through them (symbols)," you seem to have a more or less clear image of what you

want to say and where it all is supposed to lead us But it is not that obvious to me. I still
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feel that this conversation will not proceed if we don't make it clear what this discussion is

about.

You already seem to have given your response. If I understood you well, you are

questioning the concept of representation (which, in the present context, is meant to refer

mainly to an external representation, right?), and you do it on the grounds of a claim that in

the eyes of many students, nothing is being represented by a graph or a formula; the

abstract objects that would unify the clusters of symbols supposed to refer to the same

thing are absent from student's mind only too often. I agree whole-heartedly that we should

reconsider the concept of representation. This will force us to focus on the notion of

mathematical object, and try to examine its possible meaning and uses. I will stress right

away that, for me, the notion of "mathematical object" can only function as a theoretical

construct, and it should only be used as such if a good theory may be built around it.

Someone may ask whether anything as elusive as the idea of mathematical object has

a chance to turn into a scientific concept at all. The notion of science, however, has greatly

evolved in the last few decades, and it became a lot more flexible than it was when

cognitive approaches made their first steps toward general acceptance. Many factors

brought about this change. One of them was the growing dissatisfaction with the

information-processing account of the functioning of human mind. Another was the

evolution of philosophers' vision of human knowhdge. The notions about what is

scientific and what cannot be regarded as such underwent dramatic transformations. In fact,

the demarcation line between science and non-science, once so clear to everybody, was

irreversibly blurred and in certain domains became almost impossible to draw. Today, the

majority of those who view themselves as scientists are prepared to deal with concepts that

would once be discarded by them without hesitation. Varela et al. (1993) admit that still

most people would hold as a fundamental truth the scientific account of
matter/space as collection of atomic particles, while treating what is given in
their immediate experience, with all its richness, as less profound and true
(pp. 12-13).

Cognitive science, however, cannot discard all the elements of human immediate

experience any longer, and thus it is
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Janus-faced, for it looks at both roads at once: One of its faces is turned
toward nature and sees cognitive processes as behavior. The other is turned
toward the human world (or what phenomenologists call the "life-world")
and sees cognition as experience (Varela et al., 1993, p.13).

Today, nobody is really afraid anymore of talking about such immeasurable entities

like concept images and abstract objects the entities that can only be seen with our minds

eyes. To great extent, it is the growing abandonment of the Objectivist epistemology that

made us more daring than ever in our theorizing about the human mind and about its

functioning. Indeed, we came a long way since the times when "mind" itself sounded

somewhat dirty. Nowadays, people are no longer concerned with the objectivity of

knowledge with the question how well a given scientific theory reflects the "real" state

of affairs. There is no belief anymore in the "God's eye view" of reality. The concern about

the truthfulness of our representation of the pre-given world has been replaced with

pragmatic questions of usefulness (Lyotard, 1992) and of "intersubject agreement" (Rorty,

1991). One of the central criteria for evaluation of scientific theories is the question whether

they are likely to generate many interesting ideas:

the justification of scientific work is not to produce an adequate model or
replication of some outside reality, but rather simply to produce more work,
to generate new and fresh scientific ... statements, to make you have "new
ideas" ... (Jameson, 1993, p. ix)

Thus, if I somewhat disagree with your critique of the notion of (multiple)

representation, it is not because I wish to keep this notion with its traditional meaning

intact. On the contrary, I think that the use of the word in the context of cognitive science is

somehow misleading. But for me, it is misleading not so much because of the fact that the

referent of the symbol may be absent from the student's mind, but because when construed

in the traditional way, it seems to reinforce an Objectivist approach. It is misleading

because it implies an existence of an objectively given state of affairs even within the

human mind itself (like in the case when we say, for example, that such abstract concept as

function, represented by a graph and a formula, is inaccessible to a student).

I am not sure whether your protests against the traditional approach to the issue of

representations stemmed from the disillusionment with the Objectivist epistemology, but
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my doubts about this notion are the result of such disillusionment. This does not mean that

I will not talk about "abstract objects hiding behind symbols." I will. But when I ask

whether an abstract object exists or not, it will not be a question about any real existence,

which can be proved or disproved in a rigorous way. The only criterion I will use will be

that of theoretical effectiveness: I shall make claims about existence or non-existence of

abstract objects in the learner's mind only if it helps me in making sense of observable

behaviors. Indeed, you yourself, in your last statement, gave me a perfect example of a

situation in which I would say that I can see objects in peoples' thinking just when you

say the opposite. Let me remind your own words:

... I don't see objects in people's thinking. Instead, I see schemes of
operations and webs of meaning. Sometimes these schemes are ill-formed
or in the process of formation. Sometimes they are well-formed and highly
integrated. In the latter case, the people possessing these schemes maintain
that they are thinking of "mathematical objects."

What else do you need to at least try using the notion of an "abstract object" as a

potentially fruitful theoretical construct? Your own description makes it clear that this idea

could help us in pinpointing the difference between different mathematical behaviors in a

concise and productive way. You seem to me still quite afraid of being accused of making

ontological statements (about some kind of real existence of the abstract objects). Free

yourself from these fears go theoretical and be brave! After all, theory is the way we

speak, not an attempt to say that our abstract constructs mirror reality.

Pat:

I must chuckle. This is the first time I am chided for appearing to fear being

theoretical. I am often accused of being too theoretical. I've even called for members of

PME to take theory more seriously (Thompson, 1991a).

Perhaps it will help to make clear on what we agree before going further. I agree with

you that modern notions of science no longer are concerned with whether theories are true,

only with whether they are coherent and useful. This point is well-articulated in the

writings of Kuhn (1962, 1970a), Popper (1972), and Feyerabend (1988) in the philosophy

of science and in the writings of, among many others, Brouwer (1949, 1952), Lakatos

(1976, 1978), and Wilder (1968, 1981) in the philosophy of mathematics. In earlier
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publications I, too, have said that what matters most is that we develop useful ways of

thinking about aspects of teaching, learning, and experiencing mathematics (Thompson,

1979, 1982, 1991b) useful in the sense that greater insight into problems leads to more

informed and efficacious action. One of my favorite sayings is Dewey's: There is nothing

more practical than a good theory (Dewey, 1929). We have no quarrel on this matter.

Finally, you object to my criticism not because you disagree with it (I know you

don't), but because you see my criticism as being misleading. You said,

But for me, it is misleading not so much because of the fact that the referent
of the symbol may be absent from the student's mind, but because when
construed in the traditional way, it seems to reinforce an Objectivist
approach. It is misleading because it implies an existence of an objectively
given state of affairs even within the human mind itself.

I agree completely that the notion of "representation" as implying a symbol-referent

relationship is highly problematic. In fact, following von Glasersfeld's (1991) and Cobb,

Yackel and Wood's (1992) examples, I tried being quite careful to make my usage of

"representation" reflect the context of someone attempting to convey or impute meaning.

My criticism is of people using "representation" too loosely, without mentioning a person

to whom some sign, symbol, or expression has some meaning. I think you put it quite

nicely in another publication:

While Objectivism views understanding as somehow secondary to, and
dependent on, predetermined meanings, non-Objectivism implies that it is
our understanding which fills signs and [notations] with their particular
meaning. While Objectivists regard meaning as a matter of a relationship
between symbols and a. real world and thus as quite independent of the
human mind, the non-Objectivist approach suggests that there is no meaning
beyond that particular sense which is conferred on the symbols through our
understanding. (Sfard, 1994, p. 45)

Part of our miscommunication is due, I suspect, to the various stances we take

naturally when speaking about mental processes and to the various perspectives we take,

again naturally, when speaking theoretically. In regard to the first, Donald MacKay (1969)

makes a useful distinction between "actor language" and "observer language." We speak in

actor language when speaking for ourselves or in an attempt to speak for another. We

speak in observer language when speaking as an observer of another or others. It is very

difficult to remain within one or the other. In the previous sentence I adopted neither stance
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and illustrated my point about the dangers of writing in the passive voice. Did I mean

that I find it difficult to remain within one or the other, or did I mean that anyone will find it

difficult to remain within one or the other? You cannot tell.

In regard to perspectives we take when speaking theoretically, I find Alan Newell's

(1973) discussion of "grains of analysis" quite useful. In one example he compares

different analyses of teeth. On one level, teeth are quite structure-like. They are stable

biological structures which we use to gnash and to chew. When examined on another level,

teeth are constantly changing shape, eroding, and regenerating. We could say they are the

same "things," only viewed with different grains of analysis.

It seems that when you quoted my passage beginning "I don't see objects in people's

thinking ..." and said that, indeed, you could see objects, we used different grains of

analysis. What were the objects you saw me speaking of? Schemes? At the grain of

analysis I had in mind, I would say those were my constructions (actor language regarding

me, observer language regarding the people I observed). At a more distant grain of analysis

I could say, yes, those schemes were objects in their thinking. But to whom are they

objects? They are objects to me. There may be something in their thinking that are objects

to them, but I would not automatically attribute "objectness" to the schemes I identified

(speaking in actor language regarding the people I observe). To hypothesize what they took

as objects at the time of my observing them would require a different analysis.

Anna:

Shall I let you have the last word on the first question? Oh well, I will. After all, you

managed to show that there is more agreement between us than argument. So let me start

pondering our second issue.

After all the explanations regarding the non-Objectivist vision of knowledge and of

scientific theories, I feel it is my duty now to show that abstract object is a useful theoretical

construct. For the sake of enlightening the discussion, I invite you to try to make my life

difficult also on this point. To put things straight, however, let me precede the defense of

the theory of reification with a more thorough clarification of what "abstract object" means

to me.
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First, may I remind you that my use of the term is quite different from that of a

Platonist. For me, abstract object is nothing 'real', nothing that would exist even if we did

not talk about it. As Putnam (1981) put it,

"Objects" do not exist independently of conceptual schemes. We cut up the
world into objects when we introduce one or another scheme of description.
(p. 52)

In other words, objects of any kind whatsoever are, in a sense, figments of our

mind. They help us put structure and order into our experience. My approach is no

different from Putnam's: for me mathematical objects are theoretical constructs expected to

help in making sense of things we see when observing people engaged in mathematical

activity. What counts as a good theoretical construct? Something that makes it possible for

you to have more insights and generate more knowledge out of a fewer basic principles.

Something that helps you to build an effective theoretical model.

I see such notions as abstract object in psychology of mathematics and, for that

matter, as energy in physics or as mind in cognitive science as a kind of link (a glue, if

you wish) we add to the observables in order to make the latter hung together as a coherent

structure. These additional "somethings," being our own inventions, cannot be directly

observed, and cannot be identified with any specific discernible entities. Their "presence"

can only manifest itself in certain well-defined clusters of phenomena phenomena

which, in fact, wouldn't appear as in clusters and wouldn't make much sense if it wasn't

for these special "somethings" that we invented.

As it often happens, the nature and function of the special element unifying many

different situations may best be scrutinized in pathological cases: in situations in which it is

missing. Indeed, Pat, I agree with what you said in your opening piece: for many people,

certain "representations" may be empty symbols that do not represent anything. But while

saying this, you only made a stronger case for the notion of abstract object! It was thanks

to the notion of mathematical object that in my studies on the notion of function and on

algebraic thinking I was able to see many kinds of student's faulty behavior as different

symptoms of basically the same malady: student's inability to think in structural terms. A
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failure to solve an inequality, an unsuccessful attempt to answer a question about a domain

of a function, a faulty formulation of an inductive assumption on the equality of two

sequences of numbers, a confusion about the relation between an algebraic formula and a

graph all these diverse problems combined into one when I managed to see them as

resulting from learner's "blindness" to the abstract objects called functions.

Needless to say (but I'll say it anyway, just to be sure that you don't accuse me of

overlooking this important aspect), theoretical notions are not stand-alone constructs. One

can only justify their use if they become a part of a theory theory which neatly organizes

the known facts into a coherent structure and, maybe even more important, has a power of

generating new insights and turning into clearly visible things that would otherwise escape

researcher's attention. As Sherlock Holmes once nicely put it, without the special alertness

which can only come from a good theory, "you see but you do not observe."

Well, abstract objects did become a part of a theory some time ago. Many

mathematics education researchers worked in parallel on theoretical frameworks which took

the concept of abstract object seriously. The list is quite impressive: it includes both Piaget

and Vygotsky (whose thegries may be viewed as incompatible in some respects, but who

nevertheless seem to be in agreement on the points which match our present interest),

Dubinsky (1991), Harel and Kaput (1991), Gray and Tall (1994), Douady (1985) ... and

the list is still quite long. Of course, both participants of this dialogue are among the most

devoted members of this school or, at least, one of them was and still is, and the other

one was known to be before this dialogue began; see e.g. Thompson (1985), Sfard (1991,

1992); Sfard and Linchevski, (1994). I will later give an outline of my favorite variant of

such theory the breed which we call here a theory of reification.

Right now, however, I can feel it's time to cut this flow of theorizing and meta-

theorizing with some enlightening illustrations which would take us back to the

mathematical thinking itself. I'm going to present you with two short examples which

hopefully will make it clear how the notion of abstract object works as an explanatory

device. First, I will present you with a situation which, when seen through the lens of the

theory of reification, displays the presence of an abstract object in the learner's thinking. It
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will then be contrasted with a case in which abstract objects are conspicuous in their

absence.

My first example comes from a study recently completed by Carolyn Kieran and

myself in Montreal. In our experiment, 12 year old kids made their first steps in algebra.

Our approach was functional and the learning was massively supported with computer

graphics. I'm far from saying that in the study everything went according to our

expectations and that our special approach brought a solution to all the problems the

teachers always grappled with. But some nice things did happen. In the final interview, a

boy named George was asked to solve the equation 7x+4 = 5x+8. The children did not

learn an algebraic method of solving equations, but they did learn to see linear functions

through formulae such as 7x+4 or 5x+8. Here is our exchange with George:

G: Well, you could see, it would be like, ... Start at 4 and 8, this one would go up 7,
hold on, 8 and 7, hold on no, 4 and 7; 4 and 7 is 11 .... they will be equal at 2
or 3 or something like that.

I: How are you getting that 2 or 3?

G: I am just graphing in my head.

For me, it is clear that George was able to see more than the symbols more than

the formulae and the graphs. He was able to imagine abstract objects called functions. Why

abstract objects and not just graphs? Because "graphing in one's mind" is one thing, and

being able to make smooth transitions between different representations (I hope, Pat, that

you agree with my use of the term representation in this case) means that there is something

that unifies these representations. What I call "linear function 7x+4" is such a unifying

entity (it is neither the formula, nor the graph it's an abstract being).

Here comes my second example. A 16 year old girl -- let us call her Ella was

asked to solve a standard quadratic inequality: x2 + x + 1 < 0

At this stage, Ella could solve any linear inequality and was quite familiar with

quadratic functions and their graphs. The girl approached the problem eagerly and in a few

minutes produced the following written account of her efforts:

-1 ± -\/1 (4)(1)(1) -1 ± 473
(1) x1,2 =

2 2

(2) T = {} (No Solution)
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Was the written solution the only source of teacher's insight into Ella's thinking, he

would certainly reward her with a high score. As it happened, however, he talked and

listened to Ella when she was working on the problem, and the things he heard prevented

him from praising her. Let us have a look at a fragment of this dialogue.

E: [After she wrote line (1) above] There will be no solution for x, because here
[points to the number under the radical sign] I've got a negative number.

T: 0.k., so what about the inequality?

E: So the inequality isn't true. It just cannot be

T: Do you know how to draw the parabola..?

E: The parabola of this [ expression]? But there is no y here ... how can one draw
parabola when there is no y?

T: Do you know the relationship between a parabola and the solutions of such an
inequality as this?

E: Of an inequality? No. Only of an equation. But maybe it is the same.. Let's
suppose that this is equal zero [points to the inequality symbol and makes a
movement as if she was writing "=" instead of "<"]. But how can there be a
parabola if there is no result here [points to the expression she wrote in (1)], no
solution?

T: So what is your final answer ? What is the solution of the inequality?

E: There is no solution.

Do I have to add anything to convince you that we are dealing here with the case of a

girl who cannot see through symbols arid can only see the symbols themselves?

Pat:

I fail to see how my argument provides a case for "abstract objects." It seems you are

saying if something is meaningless for students, it is meaningless because do not

possess the abstract objects which would give it meaning. This doesn't follow. Chinese

characters are meaningless to me. Does that imply that my possession of certain "abstract

objects" will render them meaningful? No. My inability to read Chinese characters means

only that I do not possess the many grammatical, rhetorical, and perceptual schemes which

I need to read Chinese. On a similar note, I recently picked up a physics text which uses

notational conventions unfamiliar to me, and on top of that it employed poor rhetorical

style. I felt like I was reading Chinese, but I certainly understood the physics about which

the text's author spoke. To say that I am blind to certain "abstract objects" is a poor

explanation of my inability to understand either Chinese characters or a particular physics
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text.

Our agreement on the importance of theoretical constructs should be clear, so I'll say

nothing further on that. However, not just any theoretical construct is a good one. I find the

construct of an "abstract object" problematic in two ways: its internal coherence and your

use of it as an explanatory device.

You haven't said what you mean by an abstract object. I think I understand what you

mean by an object, or at least my understanding is not incompatible with what you've said.

It seems that by object you mean what Piaget had in mind when he spoke of children's

construction of object permanence (Piaget, 1950, 1976, 1985) people construct objects

by building and coordinating schemes of action or thought to form a locally-closed, self-

regulating system which they can re-present to themselves in the absence of the network

being activated in tow (von Glasersfeld, 1991). As a matter of methodology, to characterize

someone's construction of a particular object (especially, an object to which we might

assign a name like function), I would think it necessary to say something about that

person's schemes of action or thought which we presume constitute it.

As for "abstract" objects, if a person has constructed an object, then it would seem

this object, to that person, will be concrete. I don't know what you mean by an abstract

object. I know what Steffe et al. mean by an abstract unit (Steffe, Thompson, & Richards,

1982; Steffe, Cobb, & von Glasersfeld, 1988; Steffe, von Glasersfeld, Richards, & Cobb,

1983), but they use this as a technical term to denote something that a child has constructed

through reflective abstraction an abstracted unit, so to speak. They do not use "abstract"

as a tack-on adjective, as if there are objects and then there are abstract objects. If my

characterization of "object" is satisfactory to you, it would help me considerably were you

to explain how the adjective abstract adds anything to its explanatory power.

If in an explanation of some student's behavior you say "she has constructed function

as an object," I would still have to ask what schemes comprise this object for that student,

for objectness comes from her possessing coordinated schemes but not necessarily the

schemes you wanted her to construct. Lee and Wheeler (1989) found a large number of
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students for whom expressions, proofs, and rules were "objects," but they were objects to

these students in the same way that this sentence might be an object to my 8 year-old

daughter. She knows about sentences that they are to be read, interpreted, that they have

a beginning and an end, they generally communicate a single thought, and so on. But that

sentence is not the same object to her as it would be to a linguist who takes it apart

according to systems of grammar or pragmatics. Why? Because the schemes which

constitute sentence-objects for my daughter are very different from the schemes which

constitute sentence-objects for the linguist. You cannot say that a sentence is an object for

one but not for the other. Rather, they are different objects to two different people.

Another example that "objectness" cannot be taken at face value is Kuhn's account of

a debate between a chemist and a physicist (Kuhn, 1970b, p. 50). The chemist maintained

that a helium atom is a molecule, because it behaves as a molecule should according to the

kinetic theory of gases. The physicist maintained that a helium atom was not a molecule,

because it displays no molecular spectrum. Looked at one way, they were arguing about

what label to apply to some object. Looked at another way, their argument reflected that the

term "molecule" pointed to different (i.e., non-identical) objects for these two people. The

mention of "molecule" activated different schemes of operations in them. Is one person

correct? No. In fact, the question can be misleading.

Your examples illustrate the difficulty I have with the way you use "abstract object"

as an explanatory device.

[Solve 7x + 4 = 5x + 8]

G: Well, you could see, it would be like, ... Start at 4 and 8, this one would go up 7,
hold on, 8 and 7, hold on ... no, 4 and 7; 4 and 7 is 11 .... they will be equal at 2
or 3 or something like that.

I: How are you getting that 2 or 3?

G: I am just graphing in my head.

You said,

For me, it is clear that George was able to see more than the symbols
more than the formulae and the graphs. He was able to imagine abstract
objects called functions. Why abstract objects and not just graphs? Because
"graphing in one's mind" is one thing, and being able to make smooth
transitions between different representations ... means that there is
something that unifies these representations.
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I agree with you that George'saw more than symbols." But it is a leap I cannot make

to say he was able to "imagine abstract objects called functions." What does that mean? Did

he imagine a domain? A range? A correspondence? Did he imagine two variables covarying

continuously? Did he understand that going 3/11 of the way between x0 and x0+1 would

correspond to an increase of 3/11 of 7? What is a variable to him? What kinds of operations

can George perform on these objects called functions? Can he compare them? Combine

them? Compose them? I suspect he can do none of these. If I am correct, then I have a

difficult time understanding what these objects called "functions" are to him. I do not mean

he is not thinking of objects which he calls "functions." Rather, I mean we do not know

what comprises those objects.

It seems a more "explanatory" explanation would be: When he said "Start at 4 and 8,

this one would go up 7 ... " he was thinking something like, "I need to find a value for x

so that the two expressions have the same value. As I start at 0 and go over 1 in the left-

hand expression (as in moving on a horizontal axis) I go up 7 (as in moving on a vertical

axis) and as I start at 0 and go over 1 in the right-hand expression, I go up 5. So going

over 1 in the left-hand-side is 4+7 ..." [then, to himself, "going over 1 in the right-hand-

side is 5 +8 "]. I have too little information to guess at his reasoning in regard to his saying,

"They will be equal at 2 or 3," but what I've postulated certainly fits the information you

presented. What constructs would I use to enrich my explanation? Constructs like imagery,

scheme, etc. How would I explain the connections he seemed to make? I would appeal to

constructs like assimilation and generalizing assimilation (Thompson, 1994a). I see no

need to appeal to such a vague notion as his imagining "abstract objects called functions" or

to posit that, because he made some connections, that "there is something that unifies these

representations." When we appeal too quickly to grand ideas, we lose sight of the richness

and intricacy of students' reasoning.

Actually, I would have tried not to be in the position of so boldly guessing George's

reasoning. Had I conducted the interview I would have looked to get different information

than what you presented. The question asked of George, "How are you getting that 2 or
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3?" moved the discussion in the direction of explaining answer-getting actions instead of

discussions of what he had in mind when thinking about the task (Thompson, Philipp,

Thompson, & Boyd, in press). I suspect the conversation would have produced more

useful information had the immediately succeeding question been something like, "You

said: Start at 4 and 8, this one would go up 7. What did you mean by that?" with

subsequent questions sustaining that emphasis.

Your example involving Ella is even more problematic. At this point I must be brief,

so I'll just say that I do not understand how it furthers our understanding of students'

mathematics to explain their reasoning in terms of the absence of various abstract objects in

their reasoning. I can understand attempts to compare where students are with where we

would like them to be, but to explain where they are by saying they are not where we want

them is a non-explanation. I think a richer explanation of Ella's behavior might be found by

speaking about her assimilation of certain figural forms to an action-schema which has

"replace `<' with `..=' and solve" as its first part. That is, explanations of students' behavior

which try to capture students' experience and which posit what students do understand add

more to our understanding than do explanations which explain their behavior by stating

what they do not know.

You end Ella's example by stating "... we are dealing here with the case of a girl who

cannot see through symbols and can only see the symbols themselves." To a great extent I

agree with your statement. I do not agree that Ella's example buttresses your case that

"abstract objects" is a useful theoretical construct.

Anna, my complaints might seem methodological, but they are methodological at the

level of research programme (Lakatos, 1978), for they address basic orientations we bring

to our work of theorizing and they raise the question of the kinds of theories we value

most.

Anna:

Wow, Pat! You do seem to have taken the invitation to make my life difficult

xiously ! You might even have overdone it a little bit. But it's good. A fight will force us

to sharpen our theoretical weapons and to elicit points inadvertently glossed over.
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Your reaction to what I said sounds convincing: the often observed

"meaninglessness" (I dislike this term) of mathematics is not, per se, a proof for the

usefulness of the notion of mathematical object. I agree, and the fact is I never made this

illogical claim. The only aim of the episodes and phenomena I brought earlier was to

exemplify situations in which a person who looks through the lens of theory of reification

would spot either the presence or the absence of abstract objects. The examples were not,

and could not be, meant to show the objective necessity of the notion of abstract objects as

means of explaining the phenomena.

Since we seem to agree that there is more to understanding mathematics than knowing

the rules of symbol manipulations, the question arises what is this additional something.

This may be translated in the question what we mean by "meaning." No, don't expect me

to explore the morass of this time-honored philosophical puzzle. Let me tell you one thing,

though. You say "Chinese characters are meaningless to me." And you ask, "Does that

imply that my possession of certain 'abstract objects' will render them meaningful"? Of

course it doesn't; but although "meaninglessness" certainly does not imply the necessity of

abstract objects, having abstract objects is one way of explaining how people make certain

expressions meaningful. If the sentences you are dealing with happen to be built around a

noun, such as, say, a chair, a gremlin or a function, then having the ability to think about

the objects hiding behind the words is what we call "grasping the meaning." Sometimes,

like in the case of a chair, the referent of a noun is a tangible material object. Sometimes,

like with gremlins, the existence of such object could, theoretically, be ascertained with our

eyes, provided it really existed. Sometimes, like in the case of function, the nature and the

existence could not, even in theory, be explored with our senses. In this last case I say that

the objects we are talking about are abstract. I hope this answers your question what I mean

by the adjective "abstract" in this context.

Not quite yet? You might be right. Well, I have more to say about that. You claim for

example, and rightly so, that "If a person has constructed an object ... [then] to that person

it will be concrete." I can even help you with this. Some mathematicians I have recently
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talked to used expressions like "concrete," "tangible," and "real" when referring to the

things they were manipulating in their minds when thinking mathematically. Here, one

starts to wonder what the word "concrete" means. Like in the case of the notion of

`meaning', it is much too loaded a problem to be dealt with in this short exchange. But let

me refer you to an insightful essay by Wilensky (1991) in which, in one voice with Turk le

and Papert (1991), he suggests a "revaluation of the concrete." The need for the revaluation

arises at the crossroads of two current trends: constructivism and emergent-AI. Wilensky

analyses the "standard view" of the concrete through new glasses and arrives at the

conclusion that "concreteness is not a property of an object but rather property of a

person's relationship with the object" (Wilensky, 1991, p. 198). If so, it may be helpful

here to follow your suggestion and distinguish between two perspectives: that of an actor

and that of an observer. The mathematical object may be concrete to the former, and at the

same time abstract to the latter.

I once tried to capture the difference between these two perspectives in the metaphor

of mathematics as a virtual reality game. Have you ever seen a person wearing a

computerized helmet and a glove, engaged in a virtual reality game? Wasn't it quite

amusing? Could you make anything of this person's strange movements? Probably not, but

I bet that it never occurred to you that the funny fellow might be out of his mind. And if in

addition you had been told that, for instance, he is trying to transverse a heavily furnished,

messy room, then, quite likely, you instinctively tried to imagine the kind of objects he

could be moving around. Like this virtual reality game player, a person engaged in a

mathematical activity seems to be dealing with objects nobody else can see. You and I, as

observers, do not have a direct access to what the actor thinks he is playing with. But

assuming that he does see some objects helps us in being tolerant toward his strange

movements and makes us believe that the funny behavior has an inner logic. Trying to

figure out what the player sees is the most natural way to make sense of what he is doing.

Thus, we recognize the existence of the objects the player is dealing with, but while for the

latter they are quite concrete, for us they are abstract. Since in this conversation I am

speaking mainly from observer's perspective, I refer to the mathematical objects as
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abstract.

As a side-effect, this parable brings home to us that the notion of mathematical object

is a metaphor that shapes the abstract world in the image of tangible reality. Hopefully, it is

also more clear now how important a role a perceptually-based metaphor plays both in our

mathematical thinking and in our thinking on mathematical thinking. As we both agreed,

the actors themselves, when looking at what they are doing, would usually admit that some

objects are present in their thought. At least the best, the expert actors would say so. You

mentioned it yourself in the beginning of this dialogue, remember? "The people possessing

[highly integrated schemes of operations] maintain that they are thinking of 'mathematical

objects'." My work with mathematicians brought lots of further evidence that, indeed, the

inner world of a mathematizing person may look very much like a material world,

populated with objects which wait to be combined together, decomposed, moved and

tossed around (Sfard, 1994; Thurstone, 1994).

The fact that according to the actors themselves the metaphor of object is ubiquitous

in mathematical thinking is hardly surprising. What can be better known to us than our

perceptual experience, than the physical world that surrounds us? The mathematical objects

we can see with our mind's eyes are metaphors that constitute the mathematical universe in

the first place, and then make it possible for us to move around it in ways similar to those

in which we move in the physical world. The embodied schemes generated by our physical

experience are deeply engraved in our minds and this is thanks to them that we often find

our way in this world intuitively, without reflection (Johnson, 1987, p. 102). By using

such schemes to help ourselves move in the virtual reality of mathematics we inject

mathematical thinking with the meaningfulness of our physical experience.

The metaphoric use of "object" is by no means restricted to mathematics. Here is an

account of a physicist:

[W]hen analyzing physical phenomena, people like to put into play
"objects." Beside real objects, they ascribe a realistic character to physical
concepts or models. They build their reasoning on these "objects" as if they
were material. (Viennot, in press)

Finally, the picture will not change in a substantial way if we climb to the meta-level
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the level of thinking about mathematical thinking, the level of an observer. The

metaphor of mathematics as dealing with as-if-material objects has a special appeal for the

researcher. Speaking about mathematics in terms of abstract objects and processes on this

objects makes mathematics in the image of the world we know best: the material world.

Whatever we know about the former and we know an awful lot about it has a

potential of bringing insights about the nature and function of the latter. Those concerned

with the methodology and psychology of scientific innovation have agreed a long time ago

that scientist is "an analogical reasoner" (Knorr, 1980) that resorting to our knowledge

of things with which we are familiar and which are somehow similar to those we find in the

new domain may be for the scientist the most powerful, albeit "unofficial," way to get

moving in untrodden territories.

At a certain point you say, Pat, that "Objectness' cannot be taken at its face value." I

couldn't agree more. Objects have many faces and our knowledge of them can never be

"full." What your daughter knows of "sentence-objects" seems to be partial to rather than

different from what the linguist knows. Your second example is even more enlightening:

you say that for the chemist and the physicist "the term 'molecule' pointed to different ...

objects." In mathematics, things like that are happening all the time. For example, through

one algebraic formula, say 3x+b, one may see quite a number of different mathematical

objects: a number, albeit unknown, a linear function, a family of linear functions. The

expression may, of course, be also taken at its face value and treated as nothing more than a

string of symbols. You don't have to deal with a number of different people in order to

have all this interpretations; on the contrary, it should be teacher's goal to help her students

construct a scheme which will include all the possibilities. Such scheme is necessary for the

flexibility of thinking which was called "the hallmark of [mathematical] competence"

(Moschkovich et al., 1993) and which can be described as the ability to match an

interpretation to the context in which the formula is used. You also remark that "objectness

comes from possessing coordinated schemes but not necessarily the schemes you want

[the student] to construct." I agree again. More often than not, the scheme built by the

student is only partial. Worse than that, it often includes only one object: the "opaque"
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formula, a formula which is taken as an object in its own right and through which no other

object can be seen. My colleagues and I once called this kind of conception (scheme)

pseudo-structural (Linchevski & Sfard, 1990; Sfard & Linchevski, 1994). In our studies,

we had a chance to observe numerous phenomena which can be interpreted as adverse

effects of the lack of flexibility inevitably accompanying such impoverished conception.

Now to the most important part of your critique: the questions about my interpretation

of George's and Ella's behavior. What happened here is a result of talking "from the

middle," of bringing just one piece of a greater whole and hoping that this one element will

speak for all the rest. Obviously, things do not work in such simple way. It is only when

the stories of George and Ella are viewed within the context of a theory that they may

become truly meaningful. Talking about the presence or absence of abstract objects without

tying the notion to a theoretical framework is like using the term "energy" in physics while

talking to a person knows nothing about mechanics. It would be quite futile if one said to

this person that one of two stones has much kinetic energy and the other has none. Such

labeling is only useful if, by connecting a given situation to a theory, it immediately

increases the amount of information if, for example, it conveys the message that one

stone is in motion while the other rests. I'll try now to make up for my mistake by showing

how my explanations draw on the theory. Incidentally, I wouldn't like to sound

presumptuous when I call this particular framework "a theory." I am using this word only

to be brief.

Let me begin. You just said that "to explain where [students] are by saying they are

not where we want them to be is a non-explanation." It is certainly not the case when you

are within a theory which provides you with information about the possible alternatives to

the student's being where we want her to be, about the consequences of being in this other

place, about the possible reasons of the situation and about the means that can be taken to

change it. I tried to explain George's success by conjecturing that he did construct a certain

object, and I ascribed Ella's failure to the absence of this object. This kind of explanation is

common in science. When two kids come in contact with a case of chicken pox but only
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one of them gets infected, the doctor is likely to say that the first one had antibodies

whereas the other did not. This statement has an explanatory power, since it ties both cases

to the same underlying mechanism; it has a predictive power, because it gives a basis for

expecting what will happen to the children if they come in contact with the chicken-pox

again; finally, it may serve as a basis for some medical decisions. In a similar way, my

interpretation of the two episodes, if supported by a theory, may have an explanatory,

predictive, and prescriptive power.

Let me elaborate on the explanatory aspect. Both children were presented with

situations with which they were not well acquainted. The parable of the messy room

highlights the im ?ortance of "seeing" object for a person who is supposed to move in an

unfamiliar setting. One salient feature of objects whether material or abstract is the

fact that they tend to preserve their identity and are easily recognizable in different contexts.

You are right in claiming that we cannot say much about the kind of conception George has

developed and our information is too scarce to know whether he had the multifarious

structural (object-oriented) understanding of the formula I was talking about earlier. But we

have reasons to conjecture that he was able to deal with the non-standard situation because

he had a good sense of the particular object he was dealing with (a liner function) and

thanks to that he could adjust his actions to the new needs. Ella obviously could not see the

objects with which she was supposed to deal and, as a result, the only thing she could do

was to repeat the standard movements she once learned by watching and mimicking people

engaged in the game (e.g. the teacher). To use a description by Dtirfler (in press): When the

"adequate image schemata have not developed to supply meaning through metaphor [of

object], the discourse will instead be used in a parrot like and rote manner and will not be

flexible or extensible." Ella's problem was that the standard behaviors she learned (you are

right: most probably, it was solving quadratic equations) were inappropriate in the new

situation but, not having access to the "virtual reality" of functions, she could not see the

change.

The idea of reification may give us an even deeper insight into Ella's plight: it can

help in figuring out the reasons of her inability to think in terms of abstract objects. More
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generally, the theory provides its own explanation for the fact that the kind of deficient

conception displayed by Ella is evidently very common. The first thing that must be

explained is how mathematical objects come into being. According to the theory, these

objects are reified mathematical processes. To understand this statement, one has first to

notice an inherent process-object duality of mathematical concepts: such notions as -3,

or function 3x-2, although clearly referring to objects, may also be viewed as pointing to

certain mathematical processes: subtracting 5 from 2, extracting the square root from -1, a

certain computational procedure, respectively. Historical and psychological analyses of

concept formation led to the conclusion that operational (process-oriented) conceptions

usually precede the structural. Let me build the rest of the outline around the testimony of a

mathematician:

Mathematics is amazingly compressible: you may struggle a long time, step
by step, to work through some process or idea from several approaches.
But once you really understand it and have the mental perspective to see it as
a whole, there is a tremendous mental compression. You can file it away,
recall it quickly and completely when you need it, and use it as just one step
in some other mental process. The insight that goes with this compression is
one of the real joys of mathematics. (Thurstone, 1990, p. 847)

If the "compression" is construed as an act of reification as a transition from

operational (process-oriented) to structural vision of a concept (it doesn't have to be

construed in this way, but such interpretation is consonant with what was said before about

structural conceptions), this short passage brings in a full relief the most important aspects

of such transition. First, it confirms the developmental precedence of the operational

conception over structural: we get acquainted with the mathematical process first, and we

arrive at a structural conception only later. Second, it shows how much good reification

does to your understanding of concepts and to your ability to deal with them; or, to put it

differently, it shows the sudden insight which comes with "putting the helmet and glove

on" with the ability to see objects that are manipulated in addition to the movement that

are performed. Third, it shows that reification often arrives only after a long struggle. And

struggle it is! Numerous studies suggest that whether we are talking about functions,

numbers, linear spaces or sets, reification is difficult to attain (Breidenbach, Dubinsky,
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Hawks, & Nichols, 1992; Sfard, 1992; Sfard & Linchevski, 1994). The main source of

this inherent difficulty is what I once called the (vicious) circle of reification an apparent

discrepancy between two conditions which seem necessary for a new mathematical object

to be born. On one hand, reification should precede any mention of higher-level

manipulations on the concept in question. Indeed, as long as a lower-level object (e.g. a

function) is not available, the higher-level process (e.g. combining functions) cannot be

performed for the lack of an input. On the other hand, before a real need arises for

regarding the lower-level process (here: the computational procedure underlying the

function) as legitimate objects, the student may lack the motivation for constructing the new

intangible "thing." Thus, higher-level processes are a precondition for a lower-level

reification and vice versa! It is definitely not easy to get out of this tangle.

It seems that Ella's predicament was like that of many other students who fall victim

to the inherent difficulty of reification. The explanation provided by the theory presented

Ella's story as a special case of a general phenomenon. Understanding the underlying

reason of Ella's poor performance on the given task makes it now possible to predict what

kind of situations will be most problematic for the girl in the future. Indeed, she may be

expected to fail time and again when confronted with tasks that require having a function as

an object. Thus, while she may be quite skillful in solving all kinds of equations, she will

probably be helpless if asked to deal with, say, a singular equation or a parametric equation

(Sfard & Linchevski, 1994).

Finally, the theory has a prescriptive power and it does provide its answers to the

question how we should teach in order to cope with the difficulty of reification, in order to

prevent the situations like the one Ella got into. Since I already talked longer than I should,

I will confine myself to one more remark (see the literature quoted above for more on the

didactic implications of the theory). You opened this debate with the statement that we

should "cease our fixation with representations of (our) big ideas and instead focus on

having students use signs and symbols only when they (students) have something to say

through them." I suppose that mathematical objects, such as function, are the "big ideas"

you were talking about. In our dialogue we tried to clarify this term, so when we now
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approach pedagogical questions we hopefully know a little better what these "big ideas" are

all about. I agree tl at it is highly unlikely that the student will construct mathematical

objects right away. The theory I just presented points to the great difficulty of the

undertaking and explains why reification does take time. I also agree that "finding

situations that are sufficiently propitious for engendering multitudes of representational

activity" may be very helpful indeed, and once again, the theory supports this view. But if

the upshot of what you said is that we should give up striving for fully-fledged structural

conceptions in our students, I hope that what I said will make you soften this position. The

ideas I just presented support the view that structural conceptions the ability to "see"

abstract objects are difficult to attain, but having them is most essential to our

mathematical activity at all ages and at every level.

After all I said here you may be surprised that I have no wish to argue with your

alternative interpretations of the two episodes. I won't do it because I don't think there is a

real discrepancy between us. You just chose to look at things from a different vantage

point, and I do see the merits of this other approach. After all, accepting my point of view

does not necessarily imply rejecting yours. I hope you agree that the same phenomena may

admit different interpretations when scrutinized with different theoretical tools, and that

such different interpretations should often be regarded as complementary rather than

mutually exclusive. I hope you agree that the theory filled the notion of abstract object with

meaning just like geometrical axioms fill the primary geometrical concepts (point, line) with

meaning.

Let me finish with a few words on the place of theories in our project as researchers.

With all my preference for theorizing in terms of abstract objects, nothing could be farther

from my mind than claiming an exclusivity than saying that the resulting theory is an

ultimate answer to all the questions about mathematical thinking people have ever asked.

Two theories are sometimes better than one, and three are better than two. To quote

Freudenthal (1978, p. 78), "Education is a vast field and even that part which displays a

scientific attitude is too vast to be watched with one pair of [theoretical] eyes." Like in
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physics, where a number of ostensibly contradictory theories exist and flourish side by

side, so in mathematics education there is certainly a room for several research

perspectives. Theory of reification, like any other model, brings in full relief certain aspects

of the explored territory while ignoring many others. The only thing I wanted to convince

you about is that what it does show is important enough to make this particular theoretical

glasses worth wearing, at least from time to time. We have agreed that good theory is a

theory which may become a basis of a rich research program. Does the framework built

around the concept of reification stand up to the standards? I believe it does. In fact, I know

it does. It already proved itself in the past, when it spawned numerous studies, as well as

many useful pedagogical ideas. and enabled a synthesis of much of the existing research on

the development of central mathematical concepts. One day, it will probably exhaust its

power to generate new research, like any theory. But not quite yet. At the moment, when

the world of cognitive science is more and more fascinated by new theories of perceptual-

metaphorical sources of all human thinking, the notion of mathematical object may have

more appeal than ever.
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ELEMENTS OF A SEMIOTIC FRAMEWORK
FOR UNDERSTANDING SITUATED AND CONCEPTUAL LEARNING

James Anthony Whitson
University of Delaware

When Ross Perot's running mate appeared on the platform with Dan Quayle

and Al Gore for the vice-presidential candidates' debate in 1992, he started out by

asking, "What am I doing here?" As someone who is neither a psychologist nor

a mathematics educator or math ed researcher, I might be asking myself, "What

am I doing here, at PMENA?" In recent years, however, the psychology of

mathematics education has become heavily involved in exciting developments with

interests and implications extending far beyond the more specialized concerns of

any of the particular sub-disciplines within educational research.

In the "situated cognition" movement, for example, we see a developing

appreciation for the crucial involvement of specific practical and social situations

in the generation and the use of knowledge; and the generation and use of

mathematical knowledge in particular has been prominently featured in the situated

cognition l' ,:rature (e.g., Lave, 1988; Brown, Collins, & Duguid, 1989). Yet the

situation-specific character of knowledge and learning is being advanced as a

general principle, and not just for mathematics in particular; and, while investigation

of situated cognition can be seen as a fully psychological enterprise, it is no less

fully sociological, anthropological, neurological, philosophical, and linguistic.

Indeed, the multi-disciplinary or inter-disciplinary character of research on

cognition and learning has been raised as an issue in the situated cognition

movement. While Lave (e.g., 1992) has argued against an individualistic

psychological approach in favor of a more anthropological mode of investigation,

Walkerdine (e.g., 1988, 1992b; and in Henriques et al., 1984) has criticized
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cognitive and developmental psychology in favor of an approach that emphasizes

discursive practices and semiotic processes in constituting both the subjects and

the objects of "knowledge." Other investigators such as Clancey and Roschelle

(1991) have been more concerned with developing an interdisciplinary approach

capable of dealing with cognition in the full range of its neurological and

psychological as well as social and cultural dimensions. St. Julien (1992, 1994)

emphasizes the value of connectionism in accounting for the neurological basis of

learning, while at the same time recognizing knowledge as sustained in social

practices. Bereiter (1991) likewise sees connectionism as an important contribu-

tion in developing approaches that will integrate the insights of "situated cognition,"

"embodied cognition" (citing Lakoff, 1987, and Johnson, 1987) and other recent

departures from classical rule-based views of cognition and learning.

It might seem that the crowded array of "situated," "embodied," "connection-

ist," "constructivist" and other recently advanced views of teaching and learning

have already given us enough to think about, without our also having to deal with

semiotics. Semiotics should not, however, be regarded as providing yet another

theory of cognition, offered as an alternative to theoretical approaches such as

those mentioned above. Semiotics (i.e., the study of signs and their activity in

sign-mediated processes) is presented in this paper, rather, as the study of the

possibilities for sign-activity (or "semiosis") in general. As such, semiotics provides

conceptual resources and vocabulary that are needed in accounting for cognition,

teaching, and learning as sign-mediated processes. Thus, we should not expect

semiotics to provide any kind of over-arching theory of cognition that would

incorporate and subsume the insights of connectionism, constructivism, situated
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and embodied cognition, etc. Indeed, semiotics might be thought of as providing,

rather, something of an "under-arching" theory of basic elements and principles by

which cognition, teaching, and learningwithin the broad rich universe of sign-

mediated processesmay be understood to operate.

My own interests are pragmatic; I am personally not much interested in

systematic theory-building for its own sake. Accordingly, I believe the value of

approaching these issues with a semiotically-informed perspective should be

assessed in terms of how semiotics might contribute to dealing with real problems

that arise in our efforts to understand cognition, teaching, and learning.

The problem of accounting for representation is central in the effort by

Clancey and Roschelle (1991) to provide an understanding of situated cognition

that departs from the discredited tradition based on decontextualized rules or

algorithms, and that bridges across neurological and social levels. Dealing with

such problems in mathematics learning, Nunes et al. (1993) have concluded that

"in order to understand the psychological processes involved in street mathemat-

ics, we need a theory that allows for analysis of situations and their representa-

tions" (pp. 137-8), and that "we may need not only theoretical ideas that overcome

the polarization between general and particular knowledge but also ideas that bring

to the fore the importance of forms of representation in thinking" (pp. 144-5).

Thus, we see that these investigators find the problem of representation to

be bound up with other problems, such as the problems of generality or

particularity arising from the problems of conceptual or "transferable" learning, and

the problem of accounting for cognitive processes that are at once psychological,

sociological, biological, and cultural. Since these are sign-mediated processes,



I believe that semiotics, the study of such processes, provides a necessary

framework for dealing with these and other problems. Although there is not

sufficient space here for all the demonstrations, arguments, and connections that

would be required to justify my assessement, I will try to provide some idea of the

value of semiotics by very briefly introducing the most basic ideas of different

semiotic traditions, and suggesting how these might be used in dealing with the

problems in cognition, teaching, and learning.

As noted earlier, the use of semiotics in discussing situated cognition theory

has been introduced by Walkerdine (1992b). Her discussion employs terminology

derived from Jacques Lacan's radicalized variation on the model of "semiology"

introduced by the Swiss linguist, Ferdinand de Saussure. While Lacan's variation

is certainly more capable of accounting for the dynamic and creative (i.e., not

merely static and representative) character of sign-activity, i believe that it neglects

features of Saussurean or "structuralist" semiotics that make it possible to account

for other aspects of semiosis in general, and of cognition in particular.

Semiotics begins with a rejection of the naive understanding of the "sign"

as something that simply denotes another object in the world. Saussure's

definition of the sign, in general, is derived from his definition of the linguistic sign,

in particular. Saussure illustrated his definition with the example of the sign formed

by the union of the concept <tree> with the sound pattern "arbre" (or "tree').

Saussure himself moved beyond the model of concepts united with sound patterns,

when he replaced that terminology with his more general definition of the sign as

a combination of a "signified" together with its "signifier." Although Saussure

explains this substitution as a way of indicating the relatedness of terms within the



sign, it also generalizes his definition of the sign beyond his initial reference to

linguistic signs (with sound patterns as signifiers), so that he could now propose

a more extensive new social science of "semiology."

The anthropologist Claude Levi-Strauss has provided the most influential

example of how Saussure's structuralist approach could be generalized for diverse

uses in the humanities and social sciences (see, e.g., Howard Gardner, 1981).

The influence of the psychoanalyst Jacques Lacan is more important for our

purposes, however, since it is Lacan's departures from Saussure's model of the

sign that paved the way for a recognition of the semiosic processes discussed by

Walkerdine (1992b). At the risk of violently oversimplifying Lacan's notoriously

subtle and complex formulations, we can identify two basic steps in the transforma-

tion of Saussure's semiotic model which have been adopted in a broad range of

"post-structuralist" semiotic analysis.

First, Lacan inverted the priority of "signified" over "signifier" that was at

least implicit in Saussure's model of the sign. Lacan pointed out that formulation

Signified
of the sign as does in fact tacitly preserve a kind of classical bias

Signifier

(cf. Plato) that accords some kind of priority to the signifiedwhether the signified

is seen as a purely mental concept that can be "communicated" through

expressions of a related sound-pattern, or whether the signified is seen (even more

mistakenly, from a structuralist point of view) as a referent (i.e., an object that

exists prior to the sign, and is referred to by the signifier). Lacan insisted on

Signifier
inverting this relationship, yielding his formulation of the sign as and

Signified

accordingly recognizing far-ranging autonomy for a dynamic and continuously

productive play of signifiers that was not so easily recognized when it was



assumed tacitly that a signifier was somehow constrained under domination by the

signified. The more autonomous play of signifiers can be seen, for example, in a

kind of "chaining" process, in which the signifying term (Signifier) in a preceding

sign combination comes to serve also as a signified term (Signified2) in a

succeeding sign combination.

In such a "chaining of signifiers," the preceding signifieds and sign-

combinations are sometimes described as "sliding under' the succeeding signifiers.

Terms which may have originated in relation to certain needs and interests of the

"speakers" (or of those engaged in practices using linguistic and/or non-linguistic

signs) become displaced from active use by terms of the succeeding signs.

Succeeding signifiers may initially be admitted into use as substitutes for the

preceding terms, as if the sense and import of those terms has been preserved

through the succeeding links along the "chain" of signifiers. Ironically, it is the very

ability of succeeding signifiers to appear as sense-preserving substitutes which

allows preceding terms to disappear without notice, as the use of succeeding

terms gets taken over by the competing projects and practices in which they are

introduced and deployed.

Walkerdine reports a dialogue in which "one mother gets her daughter to

name people they are pouring drinks for and to work out how many drinks by

holding up one finger to correspond with each name" (1992b, pp. 19-20). We

begin with the people's names as "signifiers," within the conversational and mental

discourse(s) of the mother and daughter. As Walkerdine observes, however, those

names drop quickly to the level of signifieds2 in relation to new signifiers2the

fingers. Subsequently, spoken numerals might be used as signifiers3 in relation



to the fingers, which are now signifieds3. "By this time any reference to people or

outside the counting string no longer exists within the statement". Walkerdine

observes how, at this point, the combination of fingers and numerals starts being

used in "small addition tasks of the form: 'five and one more is . . . .'"

Walkerdine calls our attention to the "discursive shift" which has occurred

when the numerals and fingers are used to deal with problems posed in forms that

"can refer to anything." The same physical fingers and sound patterns might be

used in either discourse, but these are merely the "sign vehicles": When they

occur in discourses of abstract calculation, the signs in which the numerals serve

as signifiers, and fingers serve as signifieds, are not the same signs (and those

numerals and fingers are not the same signifiers and signifieds) as those which

occur in other discourses (even when the same fingers and numerals are being

used in either case). In such cases, the same sign vehicles are conveying

different signs, with different semiotic values, when employed in different

discourses. All of this might sound like a scholastic or sophistic quibble, except

for all that we have learned from Walkerdine and others who have shown

numerous and varied examples of how such differing discourses provide very

different structural potentials for the positioning of subjects able to participate within

those discourseswith dramatic consequences for formation of the very selves

and subjectivities of the participants. Such examples help us avoid misunderstand-

ing the "chaining of signifiers" as a process in which originally real and material

signifieds are progressively concealed behind illusory or "merely symbolic"

signifiers. Instead, we understand sites along the chain as sites of conflict among

competing material practicesconflict in which the sign activity produces real and



consequential practices even as those practices produce the signs by which they

are themselves conducted.

Although Lacan's notion of a chaining of signifiers helps in explaining how

signifiers can take on lives of their own, as it were, free from domination by any

"true nature" of the "signifieds" that might be presupposed as a realistic basis for

the signs in use, Lacan's focus on relations between signifieds and signifiers

neglects the relationships of difference which have been observed as the basic

elements of semantic structures. The differing uses of the word "more" observed

by Walkerdine (1992b, pp.15-18) can be used as an example. In school-

mathematics tasks, "more" is used for quantitative comparisons, in opposition to

"less." "Less" is actually only one of the possible oppositions that would presup-

pose the negatively-defined contradictory (not-more); but when "more" and "less"

are used as antonyms in these discursive practices, then the practices within which

that opposition is most relevant will pragmatically determine the semantic sense

of both terms in their relation to each other.

Walkerdine demonstrates the kind of mistake that r3searchers can make

when neglecting the differences between school-mathematics tasks of this sort,

and other tasks, in other situations, in which particular students might be more

consequentially familiar with the "same" words (such as "more"), but with very

different meaningsas in the example where the opposite of "more" is not "less",

but "no more." As in this case, that difference can be even greater than one of

differing conceptual opposition: Here, the conceptual or semantic opposition be-

tween <more> and <less> is contrasted with a pragmatic opposition between

speech-acts: "More (please)?" and "No morel"



Walkerdine argues that "while [the terms 'more' and 'less'] might be the

same signifiers the actual signs, the specific relation with signifieds was made in

specific practices" (p. 16). While Lacan's "chaining of signifiers" would help in

accounting for the flexibility of sign-relations in accommodating certain social and

cognitive requirements of the practices in question, it neglects other structural

dimensions of those sign-relations, and the ramifications that can both influence

and transcend those practices.

Figure 1 illustrates what Greimas would refer to as "secondary meta-terms"

of the square generated by the

opposition of "more" (as a de-

mand or request) and "no more"

(as refusal or denial). On this

level we find oppositions be-

tween engagement and non-en-

gagement, and between satis-

faction or compliance and disci-

pline or deprivation. The semi-

otic structures both incorporate

engagement
(conflict, negotiation, compromise)

request /
demand

more
1

not
*no more=

dental /
refusal

'no
more

not more

no denial no request
44111111111111111111=11111111.%0M1111111111110

non-engagement

Figure 1. Elaborated Square: More vs.
"No More"

and generate the semantic meaning and pragmatic force of terms within the

discursive practice here, in sharp contrast to school mathematics or other

discourses in which some of the same signifiers might occur.

Walkerdine (1990, pp. 61-81; 1992a) and Walkerdine et al. (1989) report a

situation in which, paradoxically (at least from the standpoint of official rationales

for schooling), school achievement by girls is disparaged, even as non-achieve-



ment by boys is regarded in a more positive lightand sometimes even treated

as a sign of brilliance! The structural coding of these attributions can be under-

stood in relation to what Walkerdine (1992b) reports as "the concern expressed

when poor children appear to possess advanced calculating skills, indeed, some-

times not only more advanced than their school performance would suggest, but

actually more advanced than their higher class peers" (p. 6). Having observed that

"teachers tend to understand such children as 'underdeveloped and over mature.ffi

Walkerdine explains that "those children taken to display procedural knowledge or

rote learning are taken to have demonstrated an apparent maturity that hides their

lack of appropriate conceptual development" (p. 7).

As Walkerdine (1990) explains:

Girls may be able to do mathematics, but good performance is not equated with

proper reasoning. . . . On the other hand, boys tend to produce evidence of what

is counted as "reason", even though their attainment may itself be relatively poor.

. .. Throughout the age range, girls' good performance is downplayed while boys'

often relatively poor attainment is taken as evidence of real understanding such

that any counter-evidence (poor attainment, poor attention, and so forth) is ex-

plained as peripheral to the real (Walden and Walkerdine, 1983). It is interesting

that in the case of girls (as in all judgments about attainment), attainment itself is

not seen as a reliable indicator. (p. 66)

One aspect of this discourse addressed by Walkerdine (1990, p. 72) is its

articulation with the opposi-

tion between "production" real understanding
rule-challeng4 rule-following 0

rote-learning

autivity hard work

and "reproduction" (see Fig- le 1
activity passivity

ure 2). Achievement by girls cgs
production reproduction

( ducnon-protion)

is attributed to rote-learning
Figure 2. The Production (and Non-Production)

of "Real Understanding"and rule-following, which is
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invested with positive value as a kind of reproduction, even though this is not

credited with the value attributed to the boys' achievement, which is marked,

rather, as a production of "real" (i.e., "conceptual") understanding. Walkerdine

notes, in this connection, that the peculiar combination of (reproductive) attainment

along with a purported lack of real (productive) cognitive development

. . is precisely that combination which is required for the entry of girls into the

"caring professions", in this case specifically the profession of teaching young

children. Recruitment to elementary teacher training requires advanced

qualifications, but usually a lower standard (poorer pass marks, for example) than

that required for university entrance. (p. 72)

In this observation of discursive practice in specific homes and classrooms, we can

begin to see how the structures in which terms (such as "achievement," "develop-

ment," "maturity," "conceptual", etc.) take on their effective meanings in concrete

social practices, do so in part by embedding the specific local practices within

semiotic structures as far-reaching as the schemata generated by encodings of

difference between "production" and its opposites and contradictories.

Considering what we have learned from Walkerdine about how she has

seen the distinction between "rote learning" and "conceptual development" used

in discourses and practices that systematically disparage the real intellectual

achievements of female, minority, and working class students, this raises the

problem of how to understand "concepts." and "conceptuality" in relation to the

situated nature of cognition. According to Brown, Collins, and Duguid (1989):

For centuries, the epistemology that has guided educational practice has

concentrated primarily on conceptual representation and made its relation to

objects in the world problematic by assuming that, cognitively, representation is

prior to all else. A theory of situated cognition suggests that activity and

perception are importantly and epistemologically priorat a nonconceptual
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levelto conceptuai;zation and that it k en them that mor.e attention needs to be

focused. An epistemology that begins ilith activity and perception, which are first

and foremost embedded in the world, !fay simply bypass the classical problem of

referenceof mediating conceptual n f.1msentations. (p. 41)

In Peircean terms (see Figure 0),

something becomes a sign, or a

representamen (r), in relation to an

object (0), by virtue of the possibility

that an interpretant (i) will be produced,

i.e., a singular event, or an habitual or

determinab.

,.
..z, .. ---- . - ...N,

..- torretation I
1., , et.
0.) v.
4.4 .74....... If 'ANIMISM& ,ININIMII
la)

\he
0
Figure 3. 'triadic Sign Relations (Peirce)

regular response, which responds to the representamen as signifying an object

(something other than itself) in some respect. The object is interpreted, in some

respect, in the interpretantnot directly, or im-mediately, but only through the

mediating representamen. (In Figure 3 the horizontal bar and broken line indicate

that the object is not immediately present to the interpretant.) The representamen

is related to the object, in some way (e.g., symbolically, indexically, or iconically),

so that the object "determines" the representamen as something having a potential

to "determine" something else, in turn, as an interpretant, which is indirectly

"determined" as a mediated interpretation of the object.

It should be noted that this model of continuously productive triadic sign-

relations can accommodate relations among the most diverse elements even within

a single triadic sign. A verbal utterance or a cultural norm can occur as an

interpretantas can an institutional policy, a connectionist pattern of neurological

activity, a sound, a shape, a color, a physical movement, or a social practice. Of

course, any of these (or other kinds or combinations) can also function semiosical-
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ly as an object or as a representamen within other triadic signs; moreover, a single

triadic sign might be comprised of widely disparate elements, ranging across

physiological, linguistic, and social levels.

Recognition that the most diverse elements can operate within a triadic sign

also has implications for the kind of interdisciplinary work needed to account for

cognition and other semiosic processes. Instead of seeking linkages, or ways of

bridging gaps between social, economic, cultural, linguistic, psychological,

neurological, or other "levels" of organization, this approach (first) shows the need

to account for processes that actively and intricately cut across such levels (so that

it cannot be assumed that order is established first on each of those respective

levels, which might then be seen to "interact"), and (second) provides a conceptual

and notational vocabulary for investigating such processes. By showing how

cognition operates on the "atomic" level through the action of signs that combine

elements as diverse as social policies and neurological or even meteorological

events into indecomposable signifying triads, this helps to demonstrate how

knowledge is always situated in the world, and how knowledge exists as something

distributed across diverse aspects of our mental, physical, and social world.

Figure 4 illustrates how multiple triadic relationships can incorporate

perception and habituated action in ways that can give rise to concepts as both

generalized and situated semiotic practices. Two triads are presented. In both,

the action of slicing twenty-five cents worth of cheese serves as an interpretant [i]

which, through the mediation of the coins presented (either five nickels [r1] or one

quarter [r2]), signifies a common monetary value [o]. "Twenty-five cents worth"

thus becomes conceptually generalized as a value that can correspond not only
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Figure 4. Slicing Two Bits Worth of Cheese (A Concept as a Generalized and
Situated Semiotic Practice)

to various coin combinations, but also to specific quantities of cheese or bread or

other goods. Although this might be described as an "abstract" value, we should

note that it has not become established in this illustration through the formal logical

procedure of abstraction. Instead, it has been conceived as a general sign in a

manner very much like that in which five nickels came to perceived as the sign of

an equivalent value.

At least in the case of such regularly encountered quantities, the value of

the nickels will not be calculated by the "expert" cheese vendor, but simply

recognized. Every time five nickels are encountered they will differ in their physical

arrangement. There might be a darkened dirty nickel, a Canadian nickel, or an old
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"Indian head" nickel, variously showing "heads" or "tails". The vendor is confronted

with a different visual image every time. But this does not mean that, each time,

the vendor must go through an algorithmic rule-governed procedure to ascertain

the monetary value of the coins. In the case of five nickels, the expert does not

even execute the rudimentary procedure of counting them; she simply recognizes

them as 250. Experts might recognize the value of five nickels more readily than

that of.five dimes or even four nickels. If so, this is because of the repeated and

familiar practical relationship between five nickels and the frequently encountered

monetary value 250. In that case, the perception of five nickels is no less abstract

than the conception of 250; the concept is not derived from the concrete objects

through rule-governed processes of sensation, information processing, and

calculation. Instead, in the manner described by John St. Julien (1994), the

recognition of five nickels is itself arrived at through the unruly but reliably regular

processes of (socially supported and constrained) perceptual pattern completion,

and the pattern of five nickels, in particular, is more readily perceived because of

its relation to an "abstract" quantity (250) which may be semiosically more solid

than the metal coins themselves, by virtue of the density of practical transactions

and communications in which the value of that quantity is so well established.

Quantities of cheese, coins, and monetary value are sustained in practical

cognition through the habituated relationships among them, and among them and

the terms of countless networks of other triads in which they are also involved.

A semiotic framework enables us to see how knowledge and learning that

are embodied in and distributed across specific concrete situations may, at the

same time, have the conceptual range and generality to transcend those specific
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situations in potentially empowering and critical ways. Since the sign activity in

which mathematical learning takes place brings the most diverse social,

psychological, and biological elements together within dynamic sign-relations,

semiotics may provide a common general framework for practitioners and

researchers from diverse disciplines seeking better understanding of these matters.
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REFLECTIONS AND INTERACTIONS
ON

RATIONAL NUMBER THINKING, LEARNING AND TEACHING:

An introduction to the discussion group

Thomas E. Kieren
University of Alberta

Prospect: There has been a considerable body of theoretical development and
research on rational number thinking over the last 20 years. The purpose of this
session is to allow for a broad discussion of this work with input from a variety of
persons who have and are playing a role in this work. [ See the brief reports which
follow this introduction for examples of such input.] It is hoped that audience
questions as well as "panel" interaction will highlight the major contributions of the
work done to date but also make it "problematic" in hopes of pointing to new
directions for the work on rational number thinking.

There are two intertwined thrusts that can be observed to underlie thinking and

research on rational number thinking and learning over the last 20 years or so. The first

of these is an epistemological but also a phenomenological thrust ( if those two are not

contradictory terms ) and responded to the question: "what would a person know and be

able to do if that person was observed to know rational numbers?" ( knowing being

identified with doing from the very beginning of this aspect of thinking about rational

number thinking ). In response to this question the various sub - constructs of fractional

number thinking have be identified; e.g. quotient, measure, operator, ratio number. ( The

work of Kieren; Freudenthal;Vergnaud; Behr, Post, Hare! and Lesh; and Mack, for

example, are relevant here). The second thrust is psychological in nature and responded

to the question: "are there certain schema or knowledge structures which a person builds

and then uses to construct that person's rational number knowledge structures?" (This

question carries with it a constructivist flavor which also underlies much of the research

and thinking in this domain.) In response to such a question Vergnaud developed very

general related schemes: multiplicative structures; others have looked for more specific

constructive mechanisms which a child might use in building up rational number

knowledge. (See the work of Kieren, Confrey, Hare!, Lamon, Figueras, Steffe etal in this

regard. ) Of course both of these thrusts were not divorced from other recent work on

number learning and proportional reasoning; none-the -less there is a body of work

which looks explicitly at fractional number learning through these two general

approaches.

Interaction 1.: What have we learned from this work of the last 20 years?



There have been two kinds of work which follow from the consideration,

implicitly or explicitly, of the sub-constructs of rational numbers. Streefland, (reflective

of a general Dutch interest) in particular, has been very active in developing curriculum

material for elementary school children which engage them in tasks which promote

practical human actions and informal symbolic expressions of those actions in the various

sub-constructs particularly aspects of ratio and quotient numbers . The Germans ( e.g.

Griesel, Padberg, Hasemann ) ( in a way following the earlier work of UICSM as well as

Dienes ) focused particularly on operator numbers in a more formal, mathematical

program and studied the effects of such a program. These are only two of a number of

broad ranging curriculum, instruction and evaluation efforts which relate to a construct

view of rational number knowledge and knowing.

The second body of work related to a subconstruct view has related to

verification, use and formalization of subconstruct knowledge. Variations of Kieren's

Rational Number Thinking Test have been used and studied in an attempt to identify and

find evidence for the sub-constructs of rational numbers in measured mathematical

performance of students of many ages. While some doubt the existence of sub-constructs

or at least the particular form described above ( e.g. Ohlsson), to the extent that

contemporary factor analytic techniques are useful, the four subconstructs or elaborations

of them have been observed in several different studies with varied populations ( e.g.

Giminez, Bockbrader, Rahim, Brindley, Bye and Harrison ). Relationships between

performance on such sub-constructs and particular instructional schemes for fractions

exists as well. In addition, there are a number of anecdotal reports which support the fact

that students tend to act differently on items from the different constructs although to be

sure their actions in these different fractional settings are necessarily highly related.

Behr, Post, Harel and Lesh have attempted to provide a formal symbolic language

as well as a formal, logical description of how students would function using the various

sub-constructs of fractions with respect to equivalence and computations. They have

provided an extensive body of evidence which shows differences in hypothetical formal

models of fractional action between the various subconstructs.

Interaction 2. What is the nature of and relationship among performance on

items or tasks related to various rational number sub-constructs?

Interaction 3. What is the nature of and what are the potential uses of the

various formal models of rational number thinking?



Interaction 4. What art the implications of this body of work for curriculum

makers or for the assessment of rational number thinking and learning?

Vergnaud and others have offered both models and evidence from student work as

to how rational number thinking is part of a more general set of multiplicative schemes.

Other researchers have looked at the act of dividing up equally as a critical proto-/,'
matheMatical mechanism for building up fractional ideas ( e.g. Kieren, Pothier and

Sawada, Shell ). While this latter work focused on the effect of such partitioning of

continuous quantities, Hunting and his colleagues, in a number of different studies

including several clever computer settings, have looked at discrete sets and acts on them

as a "way in " to fractions. Others ( e.g. Figueras) have considered the very early basis

for partitioning and its relationship with pre-number activities.

This stress on "mechanisms" reflects the influence of radical constructivism on

this body of work. Following both the work on partitioning, and the idea of

multiplicative structure, Confrey has studied the nature of evidence for a more general

mechanism "splitting" and sought through it to relate the basis of fractional number

thinking to the basis of more general multiplicative and particularly exponential thinking.

There is evidence (e.g. Kieren, Mason and Pine) that a folding version of "splitting" or

partitioning provides an effective introduction to fractions for children and that they are

highly aware of the multiplicative (as opposed to additive) nature of such actions.

Steffe and his colleagues, using another set of clever computer "worlds", have

studied children's fractional mathematics which they generate using the mechanism of

iterated fractional units. This work highlights the relationship between ( as well as subtle

differences between) whole number and fractional number thinking in children.

The formal work of Behr, Post, Harel and Lesh above is also a source for

identifying possible mechanisms in children's fractional number thinking in action. Two

that are very evident in their work might be called "combining fractional quantities" and

"unit reconfiguration". The former seems related to fractions as numbers for extensive

quantities while the latter allows persons to function with proportional equivalence and

fractions as numbers which for quantities which are simultaneously extensive and

intensive. With respect to the latter, Lamon has studied items which pushed students to

use various kinds and levels of proportional reasoning with fractions as ratio (or intensive

quantity ) numbers.
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Interaction 5. What are the identifiable "mechanisms " used by students in
building up fractional knowledge structures? Do those mentioned above form an

exhaustive list?

Interaction 6. How does mechanism use lead to or function within rational

number thinking?

Interaction 7. Because such mechanisms should be considered as embodied

phenomena, how are they inter-related in the actual fractional number work of
students? From what other more basic human schema might they arise ( see the

work of Mark Johnson)?

The focus of the discussion above has been on the less formal "core" of rational

number thinking. How does such thinking change and grow to be more formal? Mack,

and Kieren and Pirie have suggested different ways of modeling such growth especially

as it takes into account the various subconstructs and some of the mechanisms mentioned

above. While Mack argues for more or less direct "transferability" from knowledge

under one subconstruct to another with special attention to partitioning, Pirie and Kieren

point to the necessity of folding back to less formal activity as one broadens ones rational

number knowledge to include new subconstructs.

Interaction 8. How does a person develop more formal rational number
understandings which are not disjoint from less formal ways of fractional knowing?

It is hoped that the open discussion of rational number thinking research will
extend our knowledge base with respect to the above aspects (and others ) of

fraction learning and will allow a broad but informed dialogue on questions such as
those above. Such a dialogue may serve to trigger a new phase of the study of

fractional number, thinking and learning.
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IMAGINATION AND MATHEMATICS: THE SIZE OF A RATIO

Susan J. Lamon
Marquette University

One of the best documented impediments to children's progress in the
rational number domain is the failure to conceptualize fractional numbers,
quotients, and ratios as single entities. An instructional intervention was
designed to help children focus on the relationship between the two quantities

composing a ratio, rather than on the quantities themselves. The intervention is

consistent with current philosophical theory which holds that understanding has

a basis in bodily movement, forming imaginative structures which are gradually
elaborated to allow conceptual understanding (Johnson, 1987).

If k is a ratio number such that alb = k, a,b E I, b ;.0, then the relationship

between the values a and b is the size of k, and varying the size of a or b or both

effects changes in k. By assigning qualitative values of increase (+), decrease
(-), or no change (0) to the size of a and b, there are nine possible pairs of
change values for the two variables, and knowing these, one can reason
qualitatively about the size of k. These change pairs were used to construct the

problems that 6th-8th graders solved in clinical interviews. Ex.: Yesterday you

shared some candy bars with your friends. Today you shared fewer candy bars
with more friends. How much candy did each person receive today? {more,
less, the same amount, can't tell} Student responses were poor except in the
cases represented by change pairs (0,+) and (0,-), where 85% responded
correctly. Only 10 % were correct in the ambiguous cases (+,+) and (-,-).

In the second phase of the interview, the students were taught an
imaging processing to facilitate their reasoning. Both hands, one representing
candy bars and the other representing their friends, were extended at the same

level in front of them. The hands were then raised or lowered as indicated by
the change pairs in a given problem, and the students were told to focus their
attention in the space between their hands. It was impossible to obtain correct
answers merely by moving the hands, but the movement created an "imaginary

space" in which the students could focus on the relationship. 73% -100% of the

students reasoned correctly on each of the candy bar problems. One week
later, 74%-100% responded correctly under each change condition in another
structurally similar problem .

Johnson, M. J. (1987). The body in the mind: 1 he bodily basis of meaning,
imagination, and reason. Chicago: University of Chicago Press.
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CLASSROOM ACTIVITIES TO PREPARE EARLY ELEMENTARY STUDENTS
FOR PROPORTIONAL REASONING

Susan J. Lamon
Marquette University

Ratio and proportion is a topic that has traditionally been reserved for the

middle school mathematics curriculum. However, because most students do
not reason proportionally by the time they leave middle school, instruction may

need to play a greater role in mediating the learning of critical ideas. The

following activities have been designed to increase the interaction of early
elementary school children with some learning sites for critical aspects of ratio
and proportion. Activities such as these help students to develop a visual sense

of proportion and to verbalize about relationships.

1. The student is given a circle with a diameter of about 12 cm. This circle
represents a dinner plate. Draw a knife, a fork, and a spoon in their usual
positions next to the plate.

2. If the first object were to go through a shrinking machine, would it look like the

second one?

(----Students

Teachers

Parents

3. Mr. Pete Sauce from the World's Largest Pizza Company gave out samples
to all of the people at school last night. There were 45 students, 15 teachers,
and 30 parents. The picture above shows the parts of the pizza that each group

ate. Did Pete give everyone a fair share?
4. Students are shown a tunnel drawn in perspective ( the far end appears very

small). If a freight train enters the tunnel, will it be able to get out the other end?
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RATIO SENSE

Susan J. Lamon
Marquette University

One prerequisite to proportional reasoning is having a "sense" of ratio.

This means that the student should have an intuition that informs qualitative

judgments about numerical relationships, appropriateness of operations, and

reasonableness of answers, while at a more primitive level, it may help the

student to identify situations in which it is appropriate to apply a ratio model.

In some mathematical domains, it is thought that interactions with the

environment build intuitive knowledge that forms a foundation for later
conceptual understanding and formal methods. In the case of ratio and
proportion, we need to more fully investigate the existence and role of intuitive

knowledge. For example, one might expect that by the time students are in

middle school, they would understand something about proportions in the

human body. It was disconcerting, then, when a majority of seventh grade

students responded as Robert did in a recent interview:

1: How tall would a person be if he has arms that are 6 feet long?

R: He would have to be 6'1" tall so that his fingers don't drag on the ground.

Such answers suggest that informal experiences may not be sufficient to

enhance understanding of the ideas of ratio and proportion. Instruction may

need to help students consciously explore and expand informal experiences.

153 eighth grade students participated in a study designed to describe

their ratio sense. They were given 15 statements involving proportional,
inversely proportional, or non-proportional situations, and containing correct or

incorrect numerical information. They were asked to tell whether each
statement made sense or not. If a statement did not make sense, they were to

make it sensible by changing one or more numbers in the statement or to tell

why the statement could not be fixed by changing numbers.

Ex. 1 If an orchestra can play a symphony in 1 hour, 2 orchestras can probably

play it in 1/2 hour. [non-proportional; presented incorrectly; change number(s)]

Ex. 2 If 1 basketball player weighs 175 pounds, then 2 players probably weigh

350 pounds. [non-proportional; explain the difficulty]
Each correct proposition was identified by between 85 and 95% of the

students, but each incorrect statement was identified by only 27 to 71% of the

students. Students showed a strong tendency to treat inversely proportional or

nonsensical propositions as if they were proportional and their numerical

substitutions showed a strong preference for halving and doubling.
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A COMPARISON OF TWO APPROACHES TO DEVELOP PARTITIONING

SKILLS AS PRECURSORS TO LEARNING BASIC FRACTIONS
Sylvia R. Taube

University of Texas-Pan American

This study examined Kieren's (1975) hypothesis asserting that partitioning a unit

is critical to all rational number interpretations and alluded to Mack's (1990)

recommendation for a teaching strand on fractions based on partitioning.

Two teaching sequences for basic fractions were developed and contrasted in a

four-week experiment with two fourth-grade classes (N =40) receiving 10 hours of

instruction. One teaching sequence (direct construction) began with activities involving

partitioning of area models (geometric shapes) in which pencil and straight-edge were

used to draw lines and to show equal parts. Fraction terms and concepts of part-

whole, ordering, equivalent fractions were developed by having students construct

appropriate unit partitioning. The alternative teaching sequence (indirectconstruction)

initially included activities with pattern blocks in which students covered different

geometric shapes and recorded the number of blocks (of same color and shape)

required. Following the pattern block activities, fraction lessons from a traditional

mathematics textbook were taught in which the area units presented were already

partitioned.

Analysis of covariance (repeated measures) showed no significant mean differences

in achievement between the two classes when student CAT score was controlled.

While pre-, post- and retention tests revealed a gradual but consistent improvement in

fraction understanding for both classes, the two-week instruction was inadequate in

promoting fraction understanding necessary to succeed on the paper-pencil assessment

that measured 7 fraction concepts. Further analyses of written tests and videotaped

interviews revealed: (a) students in the direct construction class showed significant

improvement in representing fraction given an unmarked area unit but their awareness

of the equal-part condition was not evident when asked to name a fraction of a unit

that was pre-marked, (b) unfamiliar partitioning strategies for area models like a regular

pentagon can be taught, and (c) during the four-week period, fraction knowledge of

students in both classes was unstable but evolving into a more cohesive and mature

level.



CHILDREN'S IDEAS ABOUT PARTITION AND SHARING

Olimpia Figueras
Departamento de Matemdtica Educativa
Centro de Investigacion y de Estudios

Avanzados del IPN, MEXICO

For the last five years a group of Mexican researchers has
been focusing on children's ways to solve partitioning and
sharing tasks. At a first phase, individual interviews were
carried out with children -six to ten years old- throughout
different type of communities (urban, rural and indian)
within three states of the country.

The interview protocol was structured considering various
aspects related with rational number concepts and the dealing
scheme, using concrete and discrete settings. Ideas of
various researchers as Kieren, Steffe, Streefland, Pothier
and Sawada; Hunting, Davis and Pithkeley serve as a
fundamental framework to design the tasks for the interview.

From these work major hypotheses were derived, among them
are: a) one to one correspondance is an early precursor of
rational number thinking related with sharing situations, b)
small children generate verbal expresions to distinguish
fractional parts and c) the selection of a procedure to
equally distribute a quantity is linked with the setting of
the task.

Case studies based on a longitudinal observation during a
year constitute the second phase of the investigation; ten
children from four to eight years old are been individually
interviewed. The main purposes of the work carried out is to
further understand the partitioning constructive mechanism
and child's conception of equalness, as well as to identify
more precisely verbal expresions for communicating ideas
linked with equality, part-whole relationships and the
results of sharing tasks.

Evidence to sustain more strongly our hypotheses has been
derive from the case study analyses and it is linked with the
nature of mechanisms that children use in building up
rational number constructs.
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VISUALIZINu ASPECTS OF NUMBER THEORY THROUGH

SPREADSHEET MODELING

Sergei Abramovich and Azita Manouchehri

The University of Georgia

Within the past decade, the mathematics education community has been

occupied with the challenge of finding ways of integrating technology in school

mathematics curriculum, and in particular, enhancing and improving learning in

technology-rich environments. One of the tools which has been recommended

for teaching and learning mathematics through modeling is a spreadsheet. The

true potential of a spreadsheet, as a learning environment where students can

exercise their own creativity, reveals when the concept involved is formulated in

the language of discrete processes depending on two positive integral
variables. One such content area which represents enjoyable mathematics with
little previous knowledge is elementary number theory. In the past the use of

computers in number theory investigations required skills in programming
languages. The use of spreadsheets, however, allows investigations for many
topics in number theory, particularly, in Diophantine analysis. Due to the
spreadsheet capacity for immediate recalculations participants have the
opportunity to review a broad range of problems that have challenged
mathematicians throughout centuries: exploring sums of powers of integers,

discovering arithmetical properties of Pythagorean triangles, multiple

representation of integers as the sum of two squares.

We argue that flexibility of the spreadsheets in the context of independent

explorations of problems, accommodates learners of different abilities.
Students can easily modify problerns under investigation, and change the

'degree of the complexity of the ideas being explored. These create an open
interactive environment allowing individual constructions of situations based on

individual interests. The presentation includes a demonstration of these

features, and a discussion of how a computer spreadsheet allows learnerF to

recognize patterns and regularities, to make and test conjectures through

numerical evidence, and in some cases stimulates the development of

mathematical proofs.
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LINKING THE PARTICULAR AND THE GENERAL IN ALGEBRA

Daniel Chazan
Michigan State University

Judah Schwartz
Harvard Graduate School of

Education, MIT

Michel Yerushalmy
Haifa University

Visual representations are particular, but are often useful for thinking productively

about the general. In geometry, we reason about triangles in general while sketching a

particular triangle on a napkin. The trick is not to be caught in the particularity of the

diagram when attempting to make general conclusions. In algebra, the interpretation

of literal symbols allows for slippage between the particular and the general. Literal

symbols can be interpreted as a particular, though unknown, number, as is

traditionally the view when solving equations. Alternatively, they can be used to make

generalizations about the behavior of numbers as is traditional in number theory.

The session will raise questions for discussion about complexities which arise

when linking the particular and the general in algebraic representations with

educational technology in 7-12 curricula. For example, in the symbolic expression

ax+b, variation in x for particular values of a and b creates a function. How can

technology help students come to see a particular expression of an arithmetic

calculation (e.g, 2x+3) as a procedure which generates a function whose graph is

made of infinitely many points all sharing a connection to the same arithmetic

calculation? Variations in a and b for a set of values of x create families of functions.

Unlike the set of points which make the graph of the particular function, these families

can not be pictured simultaneously on the standard Cartesian plane. How can

functions of the form ax+b be represented so their relation to the family is highlighted?

Similarly, in to be able to study a particular family of functions (e.g. cubics), it might be

useful to be able to explore the members of this family which share some property (e.g.

that their graph goes through 3 points). Yet, each graph with this property is but one

such graph. How can technology make this point salient, while allowing us to think

productively with the particular?



GEOMETRY TECHNOLOGY FOCUS GROUP*

Douglas H. Clements
Julie Sarama Meredith

State University of New York at Buffalo
Michael T. Battista
Kent State University

Computers, especially with their graphic capabilities, may facilitate the

construction of geometric concepts. Decades of pre-computer research reveal few

differences between media. There are, however, certain functions computers can

perform that other media cannot easily duplicate. Do these functions affect the

learning of geometry? This focus group will address this question, hypothesizing

the following unique characteristics of computers as facilitators of geometry learning.

1. Given their graphic capabilities, computers appear to have substantial potential

to facilitate the construction of geometric representations.

3. Nevertheless, they can be concrete, in the most significant senseconcrete for

the learner.

4. Computer representations are manipulable and interactive.

5. They encourage a manipulation-based, empirical approach to knowledge

construction that may be consistent with the way students reason.

6. Mistakes in reasoning are more readily detectable than in other environments.

7. Thus, computers can aid the transition to more abstract settings.

Our plan is to have groups of researchers using different software

environments lead discussions of the issues involved in the educational application

of their software. Each group will: (1). Present the main functions, or capabilities, of

the software environment. (2.) Describe how these functions have the potential to

make a unique contribution to students' learning of geometry. (3.) Review or

present new research that addresses these contributions. (4.) Lead a discussion

among all participants on these issues.
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TOOLS FOR KNOWLEDGE CONSTRUCTION: TOOLBOOK AND SPPPC IN CLASSROOM
SETTINGS.

Michael L. Connell, University of Utah
Deiwyn L. Harnisch University of Illinois at Urbana-Champaign

We present a five phase method in which students construct mathematical ideas via

physical materials and computer technology. The initial two phases use physical materials to

pose problems which require active student involvement with physical materials to model

mathematical situations, define symbols, and develop solution strategies. The third phase

require student use of sketches of these materials and situations, constructed on the computer,

to encourage moves toward abstraction. These computer sketches then serve as the basis for

additional problems. Due to the ease with which a computer graphic is manipulated, they can be

powerful tools for thinking. In the fourth phase, mental images are developed through imagining

actions and situations. These experiences culminate when students construct strong

generalizations and problem solving skills by scripting their understandings using ToolBook.

Each of the outlined phases is viewed as steps along the path toward eventual

mathematical abstraction. For example, the computer based sketches draw much of their power

from the earlier experiences with objects. In a similar fashion, the student generated computer

representations and solutions reflect their developing mental images. The final abstractions,

rather than being based upon a single demonstration of rules, rest upon a tightly woven network

of understandings.

An integral part of this approach relies upon dynamic evaluations based upon Sato's

student problem curve theory. This approach, together with modeling of continuing interviews

and group assignments, help foster the best match of cognitive styles to create effective learning

groups. The computer role in this Focus Group will be much different than that usually

associated with CAI and Al based models. Rather than using the computer for its speed, the

computer's patience and need for exactness of logic and clarity of expression will be utilized.

The computer is used as an active listener that does exactly what it is told, as opposed to a pre-

programmed instructor requiring a specific type of answer.
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PACESETTER: MATHEMATICAL MODELING CURRICULUM

Perry Lanier, Melissa Dennis, Robert Guth, and William Fisher

Michigan State University and Battle Creek Central High School

Pacesetter, an innovative curriculum written by The College Board, calls for three main practices -- group

projects, the use of technology, and student communication of their observations and findings. This

interaction of technology and groups through mathematical modeling enhances mathematics learning as

prescribed in the NCTM Curriculum and Evaluation Standards. In particular, the importance of

communicating within the group embellishes mathematics problem solving, strengthens mathematics

reasoning skills, and proposes connections that might be unseen to some participants. "It's a class in

which you have to listen to each other in group or you might miss something," commented a Pacesetter

student remarking on the importance of communication in the curriculum. This emphasis on

communication takes a potentially isolating learning environment and turns it ;nto a laboratory of peers.

With the addition of technology, in the form of graphing calculators, this laboratory conducts powerful

experiments with complicated mathematical models with a high measure of success. The social

environment created by the use of technology in the classroom provides an impetus for group work that

results in a deeper student understanding of mathematics. How Pacesetter achieves this delicate balance

is with mathematical models from a wide range of subjects. These models evoke discussion and essentially

cannot be solved individually, but instead calls for a pooling of resources and knowledge. This relationship

will be the main focus of our discussion.'



CHILDREN'S CONSTRUCTION OF FRACTIONS USING TOOLS FOR

INTERACTIVE MATHEMATICAL ACTIVITY (TIMA) MICROWORLDS

John Olive
University of Georgia

Children's construction of operations necessary for building the rational

numbers of arithmetic has been an important issue in the psychology of
mathematics education for several decades (Kieren, 1988; Behr et al., 1992).

Some attempts have been made to use computing technology to aid children's

learning of fraction concepts but this has most often been in the form of tutorials

or drill and practice software. Few research efforts have attempted to use the

computer as an integral part of the shared learning environment for the

teacher/researcher and students. The computer microworlds that will be used

in this investigation are being developed as part of an NSF research project on

children's construction of the rational numbers of arithmetic. They have been

designed as tools for the children to develop and enact their operations on

discreet and continuous quantities. But they are also tools for the
teacher/researchers to construct situations in which they can test their emerging

models of the children's mathematics. As such, they may offer the constructivist

researcher a powerful, dynamic medium for investigating children's constructive

itineraries.
Participants will be introduced to the three microworlds (TOYS, STICKS

and BARS) in much the same way that we introduce them to children. After

some initial exploration of the possible actions of the microworlds, the
participants will be encouraged to play with these actions, creating pleasing

designs on the screen. They will then be asked to think of possible questions

that could be asked of the results of the play activity (or challenges posed within

the play activity) that might transform this play into mathematical activity.

Following this introduction, example activities from the project will be

posed for the participants to investigate. These activities will be focussed on the

children's construction of Iterative and Unit Fraction Schemes, Units-

Coordinating Partitioning Schemes, Recursive Partitioning Schemes and Co-

measurement Schemes for Fractions (Olive, 1993).
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TEACHING AND LEARNING GEOMETRY WITH THE AID OF DYNAMIC
CONSTRUCTION TOOLS SUCH AS 1HE GEOMETER'S SKETCHPAD.

John Olive
University of Georgia

The use of dynamic visualization as an aid to learning and teaching is a modern issue
arising from the recent availability of such tools as the Geometer's Sketchpad. Research
concerning the use of graphing utilities as aids for learning function concepts and ideas in
precalculus has been ongoing for several years. Lampert (1988) posed questions concerning
teachers' thinking about students' thinking about geometry after using a computer tool called the
Geometric Supposer. The Geometer's Sketchpad and similar tools (Cabri Geornetre, Geometry
Inventor) provide a level of dynamic visualization that goes beyond the capabilities of the
Supposer used in Lampert's study (the most recent editions of the Supposer software
incorporate similar dynamic features to those found in the Sketchpad). The dynamic aspect of
these new tools provides the user with ways of modeling and testing conjectures that are not
possible with any static medium.

The Sketchpad provides the user with a set of "mouse" driven geometric construction
tools (point, line, segment, ray, and circle tools) and menu driven constructions such as a
perpendicular line given a seiected point and straight object. The mouse interface permits the
user to make continuous, dynamic transformations of geometric constructions simply by dragging
part of the on-screen construction with the mouse pointer. All geometric relations embedded in
the construction are maintained during these continuous transformations, thus providing the
user with visual confirmation of what is and what is not invariant in these geometric constructions.
Measurements of lengths, areas, angles and ratios can be obtained. These measurements are
"active" in the sense that they automatically update as constructions are manipulated. Recording
and play-back features built into the program provide the user with a written record of the
constructions that can be saved and used to recreate the construction (on a new set of "givens")
when needed. This recording feature also provides teachers with a means for evaluating student
work with these tools.

Images of transformations can be obtained that are interactively linked and determined by
their pre-image. Thus, properties of transformations can be experimentally determined by
changing the pre-image and watching the effects of this change on the transformed image.
Version 2 of the Geometer's Sketchpad provides the ability to define transformations based on
constructed objects. A rotation of a figure based on a constructed angle can be changed
dynamically by simply changing the angle. Similarly, a translation based on a segment or a dilation
based on the ratio of two segments can be changed dynamically by simply altering the segments.
Custom transformations can be built from combinations of transformations and used iteratively on
a construction.

Elements of a construction can be animated in controlled ways so that loci of points or
other objects can be traced through the animation. This capability opens up a whole new field of
investigation for students. Conics can be constructed based on their locus definitions.
Constructions can be used to simulate circles rolling on lines or even on other circles, thus
generating epi-cycloid curves as the trace of the locus of a point on the rolling circle.
Trigonometric and other parametric relations can be modeled using the animation and trace locus
features.

Given these powerful capabilities to investigate topics that were previously thought of as
being in the domain of the research mathematician, we need to seriously question the current
role of geometry in our precollege curriculum. With such tools, geometry can become an
experimental science for students and provide a bridge to more advanced topics in algebra and
calculus.
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JUMPING AND RUNNING: USING TECHNOLOGY TO CAPTURE THE REAL WORLD

Andee Rubin and Nathan Kimball,

TERC

Mathematics as many students experience it often has only tenuous

connection to their everyday lives. Yet the current injunction to "connect

mathematics to students' lives" requires deep thought about just what parts of

students' activity are amenable to mathematization and which pieces of

mathematics are easily embodied in children's experiences. One approach is to

use measurement to mediate between the world and mathematical

representations and meaning. Because real-world experience can be messy

and disorganized and the underlying mathematics blurred by the complexity of

the phenomenon. The challenge is to mathematically harness the environment

without sacrificing its authenticity. This focus group will deal with two attempts to

develop technology that gives students the power to capture motion so it is

amenable to analysis. The two projects we will explore are "Playground

Physics" and "VIEW: Video for Exploring the World".

The Playground Physics project is building new playground equipment to

turn the playground into an environment in which children's play leads naturally

to mathematica'l questions. In the session, we will use a different tool a light

track that flashes a linear set of lights in sequence at a rate which can be

controlled interactively. The lights may be followed or raced and the velocity

displayed.

The VIEW project is developing software tools that allow students to

measure event occurrence (like individual jumps in jumping rope), positions,

lines, or angles over time, and to graph the data, its velocity, and other

transformations. In this session, participants will design a structure so that a

small object moving through it will create certain patterns of velocity,

acceleration, and deceleration.
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THE ADVENTURES OF JASPER WOODBURY AND THE ADVENTUREMAKER:
TECHNOLOGIES THAT SUPPORT MATHEMATICAL PROBLEM SOLVING

AND PROBLEM POSING FOR REALISTICALLY COMPLEX PROBLEMS

Susan M. Williams, Mitchell J. Nathan, Joyce L. Moore, Sashank Varma,
Susan R. Goldman, and The Cognition and Technology Group at Vanderbilt

Vanderbilt University

The Adventures of Jasper Woodbury is a video-based mathematical

problem-solving series that provides opportunities for activities that are part of

complex problem solving, e.g, planning, cooperative problem solving,

evaluation of multiple solutions, and communication of mathematical ideas. In

addition to the videos, we have developed The AdventureMaker, a computer

microworld for exploring the complex, open-ended problems presented in the

Jasper videos or similar problems posed by students.

Development of The Adventure Maker was stimulated by research showing

that even after mastering the solution of the specific problem posed in the video

and transferring this understanding to an isomorphic problem, students still

needed to improve their understanding of the underlying structure of the

problem. The goals of The Adventure Maker are:

To support an inquiry-based approach to learning mathematics in which

students generalize the results of a known problem by posing variations of

that problem and receiving feedback via an animated simulation.

To promote discussions about mathematics and its role as a tool for analysis

and problem solving. As part of these discussions, students can reflect upon

the idea that different situations can be addressed using similar mathematics.

To increase engagement by encouraging students to pose their own

problems and explore mathematical avenues of their own by creating

problems for others to solve.
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LOOKING AT ASSESSMENT IN MATHEMATICS: BUILDING A FRAMEWORK
Kainxiielly&gallunina, Florida Institute of Technology

Paula S. KOst. Florida institute of Technology
Marie Revak. Florida Institute of Technology
Carol Kehr Tittle City University of New York

This presentation describes ways of investigating teachers' use of

assessment within a framework proposed by Tittle (in press). Tittle's model for

looking at assessment provides a conceptualization that is responsive to current

cognitive constructivist (Cobb & Steffe, 1983) and interpretive (Moss, 1992)

perspectives on mathematics teaching and learning.

The T2M3 Project (Teachers Using Technology to Measure Mathematics

Meaningfully) was designed to investigate teachers' capabilities to create and

use formal instructional assessment in the math classroom, with special

emphasis on integrating technology. This project applies current research in

mathematics education to assessment (Carpenter & Fennema, 1991; Leinhardt,

1989; Livingston & Borko, 1990).

An Overview of Tittle's Framework for Looking at Assessment

Tittle (in press) proposes an underlying framework for examining

assessment, responsive to issues in educational psychology as well as

mathematics education, was needed. She suggests that to fully study

mathematics assessment we must examine three dimensions: (1) epistemology

and theories; (2) interpreters and users; and (3) assessment characteristics.

Together, these dimensions provide a comprehensive view of the context and

implications of assessment in math. The model gives equal status to all

dimensions thus defining assessment within the context of practice, that is, the

learning and teaching of mathematics.

Tittle's model also suggests lines of inquiry for examining assessment

within the context of the classroom. It broadens the discussions of validation

theory (Shepherd, 1991; Messick, 1989) by placing the interpreter and user as



the central dimension. Further, by including the users and interpreters, and

their beliefs, it enhances the structure of Webb's (1993) five features of

assessment. Using the three dimensions: theories, interpreters, and tasks, we

have begun to describe the similarities and variations of the 15 T2M3 teachers

as they create and use various assessment tasks and techniques.

Epistemology And Theories

Tittle's first dimension takes into account: (1) theories of knowledge, (2)

teaching and learning, (3) curriculum, and (4) the development and change of

both the system of assessment and its interpreters/users. It has provided a way

of identifying the epistemologies and theories held, implicitly or explicitly, by the

teachers in the T2M3 Project. It focused our attention on the underlying beliefs

of the teachers as they use, interpret, and create assessment items.

This dimension allowed us to develop a systematic investigation of the

components that influence teachers as they develop and use various forms of

assessment. It also offered a way to declare the epistemologies and theories

that underlie and drive the T2M3 Project. Our presentation illustrates the ways

of identifying teachers' theories and epistemologies and discusses the

relationship of these theories to changes in their use of assessment. The

theories and epistemologies that underlie this project , and the means of

determining the participants' theories and epistemologies, are elaborated.

These will be shown through exemplars from our research, such as videotaped

vignettes, that highlight the categories within this dimension of Tittle's model.

Interpreters and Users

The T2M3 Project began from the premise that teachers have beliefs about

learning, instruction, and assessment which influence their understanding,

interpretation, and use of alternative assessment in mathematics. In addition,

we made the assumption that no aspect of instruction, learning, or assessment

can occur independently from the context within which it is embedded.



To test these assumptions we selected participants for the T2M3 Project

who represented a broad range of beliefs and practices. In particular, they were

selected to represent a range across three major characteristics: (1) familiarity

with technology and use of technology in the math classroom, (2) knowledge

and incorporation of the NCTM Standards, and (3) expertise in mathematics

education, defined in terms of possession of the mental set usually associated

with experts (see for example, Leinhardt, 1989). To increase the degree to

which the findings could be generalized to other teachers, we included teachers

from the primary, middle, and junior high school levels and diverse school

populations, from inner city to upper middle class suburban.

This presentation tracks the course of change in the participants using

videotaped comments and descriptions from the teachers themselves. The

T2M3 teachers reflect on ideas, understandings, conflicts, and difficulties they

have experienced as they developed assessment tasks and techniques and

disseminated the assessments to their colleagues.

Assessment Characteristics

"The assessment occurs at the intersection of the important mathematics

that is taught with how it is taught, what is learned, and how it is learned"

(NCTM, 1993, p .5). The assessment repertoire of the T2M3 participants varied

widely at the beginning of the project. The teachers' facility with assessment

techniques, such as performance assessment, portfolios, scoring rubrics,

ranged from novice to 'xpert. Some had elaborate systems for formalizing their

observations and interactions, while others recognized only their pencil-and-

paper tests as assessment tools. Changes for all teachers are being measured

throughout the project.

The teachers are currently pilot testing their mathematics curriculum

modules which have assessment as the backbone of the lesson. Early in the

project all the teachers particivted in several assessment training workshops.
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These included an introduction to videotaping, benchmarks, scoring rubrics,

interviewing techniques, performance assessment, portfolios, and teacher-as-

researcher. They were exposed to several assessment systems including the

Toronto Board of Education Benchmarks and the New Siandards Project.

Through the T2M3 Project both the assessment measures explored by the

participants and the measures they have developed are being examined, with a

focus on the changes occurring in their assessment tasks and techniques. This

presentation follows the evolution of the teachers' curriculum modules and how

they conceptualized, reconceptualized, and incorporated alternative

assessments into their modules.
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Discussion Group: Emerging Standards for Research

Group Leaders: Thomas J. Cooney

University of Georgia

Frank K. Lester, Jr.

Indiana University

One of the major goals of PME-NA is to promote interdisciplinary research. This

goal poses a difficulty for the community of researchers who make up the

membership of PME-NA. The difficulty stems from the face that researchers

within any discipline set standards for scholarly discourse that often are not

functional outside that discipline. Recently, various groups have begun to discuss

standards for assessing the quality of researchin particular, standards that can

be applied to reports based on a wide variety of ideological and methodological

traditions. This discussion group will propose a preliminary set of standards for

research that seem to be emerging within mathematics education.

Baslicapogrukn.

The session will begin with very brief commentaries by a group of panelists made

up of a moderator, the group organizer, and members of groups who have been

involved in discussions of standards for research. Specifically, the session will

have the following format:

1. (20 minutes) A preliminary set of "standards" that have resulted from

deliberations among various groups of researchers over the past four or five

years will be presented by the panelists. A brief elaboration on these

standards will be provided.

2. (30 minutes) Participants will be asked to arrange themselves in small groups

to consider a series of questions about the appropriateness and adequacy of

the set presented by the panelists. Also, each group will be challenged to

come up with its own set of standards.

3. (25 minutes) Groups will share their sets of standards with the entire group.

4. (15 minutes) Next steps. The session will close with a consideration of

suitable mechanisms for extending/promoting the discussion of standards.
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Mathematics classrooms as
complex adaptive systems

A. J. (Sandy) Dawson
Simon Fraser University

Current writings on the nature of mathematicai learning directs attention
towards cultural and social aspects of human life. This is exciting and
challenging work for researchers in mathematics education. Equally

provocative work is occurring in the areas of biology, economics, complexity
theory, chaos theory, computer science and Al, and the theory of coevolution

and codetermination. The purpose of this discussion group would be to
explore key ideas from these fields with a view to broadening research
programs in mathematics education. Some of those key ideas are:

Evolution is not just a result of random mutation and natural selection, but
equally if not more importantly, it is the product of emergent behaviour and self-

organization. Self organizing systems are adaptive. Emergence is the
incessant urge of complex adaptive systems to organize themselves into
patterns. Living beings and their environments stand in relation to each other
through mutual spec;fication and codetermination.

Complex behavior need not have complex roots. Complex behavior can and is

generated from simple roots: it is not possible to predict what the outcome will

be from any set of roots. Whatever behavior appears at a particular time is

dependent upon events which have preceded it--yet the emergent behavior is

not predictable from those events.

Life at the edge of chaos is an internally driven dynamic of complex adaptive
systems. This phase describes a region located between the state where a
system dissolves into chaos, where conditions are so fluid that no patterns are

discernible, and a state where a system has become completely stable and in
which it exhibits no fluidity at all. The conjecture is that this region--the edge of

chaos-- is where learning takes place.

The discussion session wil: (1) provide a brief overview of the key ideas noted
above, and (2) through a series of focused questions and by working in small
groups explore the possible relevance of these developments for research in
mathematics education, so as to (3) share the outcome of small group
discussions with the goa: of providing directions for further explorations .
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Discussion Group: Developing Training and Research Paradigms for

the Preparation of Elementary Mathematics and Science Lead Teachers

Susan N. Friel, University of North Carolina Chapel Hill, NC.
Rebecca B. Corwin, Technical Education Research Centers, Cambridge, MA.

Robert G. Underhill, Virginia Tech, Blacksburg, VA

It is increasingly apparent that if we want to impact change in how mathematics and science

are taught at the elementary levels (K-6), we need to work with practicing teachers to update and

improve their content and pedagogy knowledge and skills. This creates serious needs for

increased capacity in mathematics and science at the school level. An emerging paradigmthe

use of lead teachersresponds to the increased emphasis on site-based management and local

control and adaptation.

As programs for lead teachers are developed and implemented, we need to refine our

assumptions based on the results of evaluative research. We must document not only the impact

of such professional development programs on the lead teachers themselves but the impact over

time of the second tier professional development programs and support provided by the lead

teachers to their colleagues and peers. The central issue is:

What paradigms best capture the Important elements needed in developing

and researching the Impact of lead teachers in mathematics and science, K-6?

There are a number of questions that must be addressed in order to respond to this issue

(See below for examples). These will be refined to focus the work of the discussion group.

1. What does the literature tell us about ways to evaluate lead teacher development programs as

they relate to mathematics and science at the K-6 level?

2. How do we identify people who will be successful in the role of lead teachers? Do the

characteristics of the role of lead teacher interact with the characteristics of the individual? If

so, in what ways?

3. How do we evaluate the content and pedagogy knowledge and skills of teacher leaders

before, during, and after their involvement in a development program?

4. How do we assess "teacher leader impact" on students with whom they may work directly and

on peers and colleagues with whom they work in their capacity as teacher leaders?
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CONCEPTUAL UNDERSTANDING OF COMMON AND DECIMAL FRACTIONS

Douglas T. Owens

The Ohio State University

One of the reasons students lose interest in mathematics in school is that

they see mathematics as a series of unrelated meaningless rules and symbols.

In designing instructional tasks we tried hard to insure that the tasks would be

meaningful to the children. We used manipulatives in order to base the

concepts in something the students could touch and sense and could relate to

the words and symbols. When using word problems, we set the tasks in

contexts we believed would be familiar to the children. We gave the children

opportunity to integrate manipulatives, oral fraction language about the

situations, and common and decimal fraction words and symbols. We focused

on helping children develop concepts before procedures.

The first part of the discussion session will be a brief description of the

teaching tasks and interview tasks and responses. At the end of the

presentation, participants will be invited to express reactions to the content,

materials, examples, student responses, and some issues and questions: How

can we best design instructional tasks on fractions to provide experiences for

children which will be in the realm of their experience? When we use

manipulatives and other contrived tasks, how do experiences with these tasks

relate to understandings in contexts? How does the school setting or culture

affect students' performance when presented the tasks in a one-to-one

interview setting? How does the school setting constrain the application of

principles learned in school to settings outside the school? How can we best

help youth to integrate the concepts of common and decimal fractions, percent

and ratio? What is the impact of technology on the curriculum and teaching of

rational number concepts? Participants will be invited to react and express their

own issues about the curriculum, teaching or student understanding of rational

numbers.
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INTERACTIVE MULTIMEDIA: ITS IMPACT ON RESEARCH

Tee i Perl
Teri Perl Associates

Carolyn Maher Anne Teppo
Rutgers University Montana State Univ.

The purpose of this discussion group is to investigate interactive multimedia

as a research tool in mathematics education. This technology consists of a CD-ROM

disk with computer access, and involves the creation of Quick Time sequences from

collected videos and the creation of a HyperCard or HyperCard-like interface.

CD-ROM currently has the potential to store huge amounts of information,

both graphic and textual as well as voice, sound, and video. When combined with

an appropriate computer interface, the contents of the CD-ROM data source may

be accessed in a non-linear fashion. This non-linear access feature allows researchers

to explore different paths through this new kind of data, raising the possibility of

addressing a broad range of questions with the particular research domain.

The nature of interactive multimedia influences the type of research questions

asked and the nature of the information collected, the ways in which data are

displayed and analyzed, and ways in which research reports are presented. For

example, decisions regarding the allocation of the CD-ROM space among the

elements to be included in the final project must be made and evaluated as the

project develops. Current CD-ROM disks hold approximately 640 MB of material.

Storage of different multimedia objects utilize vastly different amounts of space. A

Quick Time video clip of one minute duration requires about 4 MB of memory

whereas other data sources such as text require far less. '['he importance of different

elements such as video clips, voice-over, text, pictures, etc. must be evaluated to

determine a "best mix" of these elements to create a CD-Rom data source of

maximum utility within the available space.

At the beginning of the discussion, information will be presented on the basic

functioning of the technology. A CD-ROM disk made from video clips of children

engaged in active construction of mathematical ideas will be shown. The use of such

disks for teacher training and classroom research will be described. Participants will

be encouraged to examine the impact of this technology on mathematics education

research.
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Children's Mathematical Knowledge and Construction of Units

Tad Watanabe
Towson State University

The concept of units as mental constructs has been of interest to mathematicians,

from the time of Euclid. In the current era, the concept of units was used extensively by

Steffe and his colleagues in explaining how children learn to count. Furthermore, a

number of researchers have reported that the nature of units constructed plays a

significant role in an understanding of a variety of mathematics concepts, for example,

fractions, ratio and proportion, exponential function and geometric problem solving.

Because children's unit-related notions influence their mathematical understanding of

so many topics, some researchers have suggested that a theoretical framework with a

specific focus on children's units would be productive. However, it is clear that the

development of such a theoretical framework is still in its infancy, and requires an open

and vigorous discussion by researchers. The purpose of this discussion group, is to begin

such a discussion, and promote the interchange of ideas on units by researches studying

diverse topics. Specifically, the following two questions will begin our discussion.

1. What will we mean by the term unit? Specifically, is there any difference
among the notions of a unit, a unity, a whole, etc.?

2. What are some unit-related concepts that may transcend specific topics?

The first question is designed to bring coherence to the study of units and develop some

uniformity in the language researchers use. In order to develop a theoretical framework,

we must first come to a consensus on what we mean by the term "unit." The second

question assumes the view that children's unit-related notions are fundamental

mathematical knowledge construction schemes. Among the ideas that have been

suggested are the notions of composite units and children's units coordination schemes.

During the discussion, we will examine the viability of these suggestions and identify

other important ideas.
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FACTORS IN LEARNING LINEAR ALGEBRA

Guershon Hailer

Purdue University

The Linear Algebra Curriculum Study Group (LACSG) have generated a set of recommendations
for the first course in linear algebra (Carlson, Johnson, Lay, & Porter, 1933). These
recommendations have highlighted the need for a first course in linear algebra that would give
students a solid understanding of this topic. This paper points to factors essential to the building
of an effective concept image of linear algebra. The factors that will be discussed are:

1. The appropriateness of the time allocated to linear algebra.
2. Students' background and readiness for the kind of course called for by the LACSG,

in regard to linear algebra ideas and language.
3. Students' background and readiness for tne kind of course called for by the LACSG,

in regard to the concept of proof.

Appropriateness of the Time Allocated to LlInear Algebra

For most students, the construction of an effective concept image (Ala Vinner, 1985) is a

long and painstaking process. It is not always easy for us, as teachers, to realize this fact, for, as

Piaget (1960) pointed out, a concept is deceptively simple when it has reached its final

equilibrium, but its genesis is much more complex. The building of an effective concept image in

linear algebra requires a major effort and sufficient time on the part of the students as well as their

teachers. Yet, we allocate only one course in the entire undergraduate mathematics curriculum to

linear algebra. In comparison, as Alan Tucker (1993) has pointed out, we devote an entire year-

and-half of the lower-division core mathematics to calculus. Even with this amount of time,

calculus is still difficult for students, a fact which raises doubts on the sufficiency of the time

allocated to linear algebra.

In the case of calculus, we understand that students must build solid concept images for

one-variable calculus concepts and, rightly so, we devote two courses to this goal, before we

introduce multivariable calculus. For example, we understand that students must gradually

abstract the idea of derivative by first dealing with it extensively in the case of one-variable

functions, then abstract it into higher, yet spatially imaginable, cases (i.e. real-valued functions f:

R2 -> R and R3 -> R), and only then move to general functions f:R n Firrl. On the other hand, we

do not seem to have the same patience for the abstraction process in linear algebra. Nor do we

take into consideration the obvious fact that linear algebra concepts are indispensable for

'The complete version of this paper will be published in the College Mathematical Journal
under the title "The linear algebra curriculum study group recommendations: Moving beyond
concept definition."
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understanding many multivariable calculus ideas. In most cases, ideas that require linear algebra

background are shuffled under separate sections or exercises labeled "Optional."

Students' Background and Readiness in Regard to Linear Algebra Content

The Imbalance between the time allocated to calculus and that allocated to linear algebra

is, in fact, even greater because high-school mathematics is geared toward calculus needs more

than linear algebra needs. This argument may not be true if examined solely from the viewpoint of

conte.jat. High-school curricula does include topics such as systems of linear equations, analytic

geometry, and Euclidean space; all are part of linear algebra. But these topics are taught in high-

school in ways that have little to do with the basic ideas of linear algebra. High-school students are

not prepared for the objects, language, ideas, and ways of thinking that are unique to linear

algebra.

From the students' point of view, calculus is a natural continuation of the mathematics they

learned in high-school. After all, students deal with real numbers and functions of real numbers in

high-school, and continue to deal with these objects in calculus. Also, they are often impressed

by the power of calculus tools to help them solve problems in familiar domains, such as finding the

area of non-standard figures, or modeling projectile motion. In contrast, students make little or no

connection between the ideas they learn in linear algebra and the mathematics they learn in high-

school. In the current situation, the only connection that potentially exists between high-school

mathematics and linear algebra is the study of systems of linear equations. But even this

connection is superficial. High-school students' involvement with systems of linear equations

amounts to learning a solution procedure for 2X2 and 3X3 systems. They do not deal with matrix

representations of these systems, questions about existence and uniqueness of solutions,

relations to analytic geometry of lines and planes in space, geometric transformations, matrix

algebra and determinants, etc. Evidence that students place a low value on the relevance of

linear algebra for high-school mathematics can be derived from a recent survey of mathematics

education graduates. In this survey, 45% of the respondents believed that the value of linear

algebra to their profession is marginal or useless, in contrast to an average of only 13% who

thought so about calculus (OAS, 1992).

To demonstrate what the discontinuity between high-school mathematics and linear

algebra entails, let 1..e focus on one aspect of this discontinuity. Students in high-school deal with

real numbers and continue to deal with the same type of objects in calculus. Real numbers, for all

purposes of high-school mathematics and elementary calculus, represent either ratio quantities,

such as, speed, density, price, and probability, or magnitude quantities, such as time, weight,



length, and cost. Accordingly, the symbolic representations for these objects are one-

dimensional. In linear algebra, on the other hand, new types of objects are added to the play: n-

tuples, matrices, and functions as entitles of a vector-space. These, in contrast to real numbers,

represent multidimensional quantities, such as, probability vectors and price vectors, directed

graphs, and solutions of a differential equation that models the effect of temperature change.

According to the LACSG recommendations, the first course In linear algebra should be matrix-

oriented; therefore, students would have to deal with vectors and matrices right at the beginning

of the course. For this, students would be required to develop, in a relatively short period of time,

a s.inal_aysabaloaanipulatioia ability they never acquired before. For example, consider the

statement:

RX=0, where R is a row reduced echelon matrix with r non-zero rows in which the leading
entry of row i occurs in column k(i) and X is a column vector. This system consists of r non-
trivial equations in which the unknown x k(i) occurs with non-zero coefficient only in the i-

th equation.

To comprehend this statement, we need to carry out several mental activities, among which (a) we

visualize the matrix R and the positions of the leading entries, (b) mentally carry out the product of

R with a column of unknowns, (c) visualize the corresponding positions of the unknowns in the

system of equations RX =O, etc. Even when we express each of these steps on paper, we must

first imagine and carry them out mentally; otherwise, they become entirely mechanical for us

without our seeing the overall structure. In the same manner, take the useful formulas for

computing a row C(l) and column C(i) in the the matrix products C = AB,

1. (AB)(i) = AwB = EA(0B(k) 2. (AB)(i) = ABM,. EA(k)B(i)k

Students may be able to verify these formulas by a direct computation of the expressions

involved. But to make these formulas part of their concept image so that they can apply them on

their own and appreciate their usefulness, they need to develop a feel for the relations expressed

by them. That feel involves, in part, spatial symbolic manipulations of the different components In

these formulas.

The above statement and the latter formulas may not seem to be difficult to us. Even so,

experience shows that the language of linear algebra and the new way of symbol manipulation

take time to become part of the student's repertoire. But the problem is that in the midst of their

struggle to adapt to this new environment, students are introduced to complex ideas, such as

linear independence, spanning set, and subspace. That is when, using David Carlson's words,

the "fog begins to roll in" and students lose track of what they are learning (1993).
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The LACSG recommendations have set forth the standard for the first course in linear

algebra to be an Intellectually challenging course, with careful definitions and statements of

theorems, and proofs that enhance undemtanding. From a cognitive and pedagogical viewpoint,

a linear algebra course that stresses proofs is both a necessity and a challenge. It is a necessity

because the emphasis on proofs is indispensable for the development of rich and effective

concept images In linear algebra, Without understanding the reasoning behind the construction

of concepts and the justification of arguments, students will end up memorizing algorithms and

reciting definitions. It is a challenge because, as we all know, proofs are a stumbling block for many

students. Research has shown that many students carry serious misconceptions about proofs.

For example, students do not understand that inductive arguments are not proofs in mathematics;

they do not see the need for deductive verifications; they are influenced by the ritualistic aspect

of proof; anc they do not understand that a proof confers on it a universal validity, excluding the

need for any further checking (see, for example, Harel & Martin, 1989; Fischbein and

Kedem, 1982). This situation requires, therefore, careful considerations and a special attention to

the teaching and learning of mathematical proof.

In the current situation, the first course in linear algebra, if it emphasizes proofs, would be

students' first experience with algebraic proofs, because calculus often is being taught proof-free

and, traditionally, the idea of proof, as a deductive process, where hypotheses lead to

conclusions, is stressed in the teaching of geometry but not in the teaching of algebra. Philip

Davis and Reuben Hersh (1982) pointed out that "as late as the 1950s one heard statements from

secondary school teachers, reeling under the impact of the 'new math,' to the effect that they had

always thought geometry had 'proof' while arithmetic and algebra did not." The death of the "new

math" put an end to algebra proofs in school mathematics.

In the last few years, I have been working on the epistemology of the concept of

mathematical proof with students at various levels. One of the conclusions coming from this work

Is that a major reason that students nave serious difficulties producing, understanding, and even

appreciating the need for proofs is that we, their teachers, take for granted what constitutes

justification and evidence in their eyes (Harel, in preparation). Rather than gradually refine

students' conception of what constitutes evidence In mathematics, we Impose on them proof

methods and implication rules that in many cases are extraneous to what convinces them. This

begins when the notion of proof is first introduced in high-school geometry. We demand, for

example, that proofs be written in a two column format, with formal "justifications" whose need not
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always are understood by a beginning student (e.g., Statement: AB = AB. Reason: Reflexive

property of segment congruence). Also, we present proofs of well stated, and in many cases

obvious, propositions, rather than ask for explorations and conjecturing. As a consequence,

students do not learn that proofs are first and foremost CONVINCING arguments, that proofs

(and theorems) are a product cf human activity, in which they can and should participate, and that it

is their responsibility to read proofs and understand the motivation behind them.

No one can expect to remedy students' misconceptions and "fill in" other missing

conceptions about proofs in one single course. To meet the challenge to teach a linear algebra

course that emphasizes proof, we must succeed in educating our students throughout the

mathematics curriculum in school and college to appreciate, understand, and produce proofs.

The movement towards this important goal cannot start in the first course in linear algebra; it must

begin in the high-school years and continue into the calculus courses. In fact, with a careful

approach and a suitable level, we should begin educating students about the value of justification

(not mathematical proof, of course) in the elementary school years. Despite this, I believe that an

emphasis on proof in the first course in linear algebra, as was recommended by the LACSG, is

vital.

Summary

In this paper, I have discussed three factors essential to the building of effective concept

images in linear algebra: The appropriateness of the time allocated to linear algebra; students'

background and readiness in regards to objects, language, and ideas that are unique to linear

algebra, and students' background and readiness in regards to:he concept of proof. In Harel (in

press), I make several suggestions for instructional treatments that address each of these factors.

These suggestions address the need to prepare students for the unique environment of linear

algebra prior to their first exposure to this topic in college. Specifically, three ideas are presented:

(a) the need for and feasibility of incorporating linear algebra in high-school; (b) a suggestion how,

prior to their first course in linear algebra, students can be acquainted with the environment of

linear algebra, and (c) instructional treatments for the concept of proof.
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ARTICULATIONS BETWEEN THE SETTINGS, NUMERIC,
ALGEBRAIC AND GRAPHIC RELATED TO THE DIFFERENTIAL EQUATIONS

Arturo Hernandez, Fernando Hitt
ITCM CINVESTAV PNFAPM, Mexico

Abstract

Some obstacles in the learning the Ordinary Differential Equations
are, in part, due to the traditional treatment that emphasizes an
algorithmic-algebraic approach (since Euler, 1768). In this work,
we are taking as theoretical support the notion of didactic
transposition (Chevallard, 1985), and the idea of setting (Douady,
1986, 1991) to analyze the numeric, algebraic and graphic
approaches in the solution process of Ordinary Differential
Equations. In this study the computational software plays an
important role in the three treatments.

Introduction

The traditional teaching of the Ordinary Differential Equation's course

(EDO in what follows), basically is concerned with an algebraic approach on the

resolution process, leaving out of the numeric and graphic treatments (Artigue,

1989, Hernandez, 1993a). On this direction, we do an analysis of the situation,

with the purpose of having a theoretical view of the problem, from which we

can modify the strategies of actual teaching. Thus, on the one hand, we

identify the different variables immersed in the process of didactic transposition

related to the study of ODE'S teaching; and on the other hand, we analyze the

mathematical dimension in the context of Douady's idea of 'setting' (1991, p.

117), and their articulations (translations from one system to another,

preserving meaning). To promote the articulations between settings we propose

the use of the software DERIVE. This tool allows to implement the three

treatments in the same screen: The classical numeric algorithm (Euler, Runge-

Kutta, etc), the sketch of slopes field with the goal is to have a global vision of

the behavior of the solutions, and finally, the construction of strategies to



obtain the solutions of the first order equations (separable, homogenous, linear,

exact, etc.) and the second order (linear).

Didactic Transposition related to the Ordinary Differential Equations

The historical development of the ODE shows a clear predominance of

the algorithmic-algebraic approach, this was impulsed by Euier (Institutiones

Calculi Integral's, 1768-1770). Hernandez (1993b, pp. 8-27) uses the didactic

transposition (Chevallard, 1985, Arsac, 1992), in order to study the ODE. From

this analysis, he conclude: "...The algorithmic-algebraic character is determined,

on the one hand, by the close relationship that exists between the algebraic

development (as the search of roots of a polynome in terms of radicals) and the

linear differential equations (cuadratic integration, Demidov, 1982), on the other

hand, by the fact that the integral transforms, in particular Laplace transform,

were built on the study of the linear differential equations (Deakin, 1984,

Lutzen, 1979)". This phenomenon has influenced the design of the curriculum.

For example, the actual syllabus in the universities in Mexico has the two

historical components, which determine the algebraic approach.

This dominant treatment in the syllabus (as well as in textbooks) for

engineering students in Mexico, is due, in addition to the two historical

components mentioned above, to other factors, from which we highlight the

following: a) The algorithmic algebraic process of routinary problems, are easy

to develop by the students as it is shown by the studies of Orton, Sel&n, and

Artigue (1991), b) The orchestration of the graphic treatment (or numeric) in the

classroom, provokes necessarily the use of the microcomputer, if not it is hard

to visualize the slopes of the fields and isoclines curves, and c) with the
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incorporation of Laplace's transform to the syllabus of the engineering schools,

in the middle of this century, the algebraic proccesses at the universities

became stronger.

Didactic variable in the three treatments using the microcomputer

Nowadays, with the theory of dynamic systems and computation

development, there is the possibility of involving the numerical and graphical

treatments in teaching. In fact, during this century, propositions such as that

of Brodetsky (The Graphical Treatment of Differential Equations, 1919-1920)1

did not influence teaching, because of the avoidance of visual considerations

in formal mathematics. Brodetsky's work, emphasized the role of the

geometrical treatment as he showed a differential equation that did not have,

an algebraic solution. However, he showed particular solutions graphically to

that equation. Nowadays, computers have produced a change in teaching.

Firstly, the ODE have been worked out in computers curses. And secondly,

with the development of microcomputers, the graphical approach suggested by

some authors (SMP, 1983, Sanchez et al., 1984, Artigue, 1992, Hubbard y

West, 1991).

Settings and
articulations

Didactical ) Didactic
Transposition engineering

iScientific instructional

History of knowledge ---> The students

knowledge Academic knowledge

the ODE

Environments: Dynamic systemti': Computation

Figure 1

Numeric
Graphic
Algebraic

It was forgotten about in the studies of visualization of the ODE, it is perhaps the first try
to embody a graphical approach to the resolution of the ODE.
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Hirsch (1984), Belden et al (1989) and Artigue (1991) have pointed out

that the teaching of mathematics emphasizes the algorithmic-algebraic approach

and leave out the numerical and treatments. In this direction, the

microcomputer plays an important role as a didactic variable (Brousseau, 1 984).

That is, it creates an equilibrium between the numeric and algebraic treatment

with the graphic. Using the microcomputer, we can have on the screen the

three representations cited above. We resumed these considerations with the

diagram of the figure 1.

A proposition: Change and interplay of settings in the teaching the ODE

To construct didactical situations as those suggested by Douady (1986,

1991), we have taken the notions of setting and the relations of change and

interplay of settings, in order to have a teaching proposition, which embodies

and provokes the articulations between the numeric and graphic approach, and

to give a complementary vision of the algebraic treatment. This proposal has

been worked out in Hernandez (1993b), and some of the characteristics are:
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I) The ODE are deeply concern with the modelling of deterministic
processes (i.e. those where the final trajeciory has been determined by the
initial conditions) and that exist basically three settings of the ODE's resolution:

numeric, graphic and algebraic. In other words, it means that there are three

different methods to understand, describe and calculate the solutions of one
differential equation, where the final representation of the solution can be an

algebraic expression, a table with numbers or the graph of a curve.

II) Incorporating the numeric and algebraic approach does not mean that

we are giving up the algebraic treatment, on the contraire, we are extending the

ways of ODE's resolution and having at the same time, connections between
the different representations, and giving a better framework to generate models

that are described by an ODE. In this way, we need to change the algorithmic

approach, because in textbooks, the exercises are sketched to drill using a

"recipe" instead of doing a research work on the solution. Also, the models that

are studied at this level, almost the differential equations are classified in linear

and separable variables.

III) The numeric treatment, that in general does not belong to the
traditional course of the ODE, it is worked out in the courses related to
programming or numerical analysis. From our point of view, it is important to
work with, at the beginning of an ODE's course. Emphasizing, on the one hand,

the transition from a particular solution to the general solution, and on the other

hand, connecting the tabular representation with the graphical one.

IV) From the graphic representation system's resolution, we use basically

slopes field with the microcomputer, adding Brodetsky's method, and the
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isoclines curves. Fundamentally, we propose the students to sketch on the

slopes field the integral curves. Also, we search the connections between this

system of representation with the concept of funnel and antifunnel, to study

the stability or not of the solutions.

Finally, we propose the use of the software DERIVE on the classroom,

it allows us to provoke the articulations between the three systems of

representations.

Anal comments

The historical analysis related to the ODE teade to the conclusion that

there was a development of the ODE, from Euler up to now where visual

considerations were avoided (excepting perhaps Brodetsky's work, 1919-20).

This development, in his didactical transposition, influenced the teaching of the

ODE, in these curses, the geometrical representations were almost out of the

educational context. Also, the numerical aspect was transferred to the

computations courses and zhe students were conducted to work mostly with

the algebraic representation system.

Douady's ideas related to interplay between settings, have induced the

work to elaborate strategies to work within the classroom, as those exposed

in I, 11, Ill and IV, of this document.

Related to the resolution of the ODE in a computer environment the

software DERIVE seems to be one between others that can provoke the

articulations between the different settings. The experimental work with

engineering students is in process at this moment.
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IMAGE STRUCTURES AND REIFICATION

in ADVANCED MATHEMATICAL THINKING:
The Concept of Basis

Libby Krussel
SUNY College at Cortland, NY

This is part of a larger study which examined nine advanced mathematical
thinkers for evidence of visual image structures, links among structures, and reifica-
tion events in their understanding of 21 mathematical concepts. In this paper, the
concept of basis is analyzed.

Associated with any given mathematical concept, Tall and Vinner(1981) define

a concept image as 'the total cognitive structure that is associated with the concept,

which includes all the mental pictures and associated properties and processes.'

However, one's mathematical understanding is determined as much by the structure

of the concept image as by the sheer quantity of images, formal definitions, facts and

propositions associated with the concept. Milestones in the development of one's

mathematical understanding come from radical new structures or a restructuring

of existing structures, but in a radical way.

Intuitioti plays a central role in advanced mathematical thinking. Fischbein

(1987) asserts that the main factor contributing to the immediacy of intuition is

visualization. He discusses three types of visual models used in intuitive reasoning:

Diagrammatic model This is comprised largely of graphical represen-

tations, and other diagrammatic schemas that pull out the essential aspects of a

problem situation, and offer a global perspective.

Analogic model - Two distinct conceptual systems are analogic if there

are systematic similarities between the two which would lead one to assume further

similarities. For example, electric current is sometimes described as being analogous

to fluid flowing through a narrow tube.
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Paradigmatic model - This is more than just an example, but a class

representative, through which one may view the entire concept.

Lakoff(1987) provides details of similar structures for a concept image in his

discussion of the imaginative structures employed in reason, two of which, important

in mathematics, are:

Propositional model. In contrast to the other three, this model does not

use imaginary devices of any kind. In a mathematical context, this will be referred

to as algebraic symbols.

Image schematic model. Mental categories structured by image schemas

may be understood in terms of container schemas of various types, providing the

scaffolding by which concept images may be structured.

Sfard(1991) discusses an operational/structural duality in the understanding

of mathematical concepts. She identifies three stages in the progress towards a

structural understanding: interiorization, condensation and reification. Attainment

of the reification stage requires a quantum leap, an earthquake-like event in one's

understanding, providing a radical restructuring of one's concept image.

Sfard makes the case that the cognitive schernas used in an operational ap-

proach are significantly different from those employed in a structural one, that the

images associated with an operational understanding - linear, sequential, verbal -

are different from those associated with a structural one -wholistic, integrated, vi-

sual. Sfard notes that, in the structural approach, these related compact, wholistic,

visual images are used as pointers to more detailed information, and that as such are

also useful in bridging the gap between an operational conception and a structural

one, serving as a ay-station in our intellectual journey.'
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To document the use of these different types of cognitive structures in advanced

mathematical thinking, I conducted an in-depth study of nine individuals who were

advanced mathematical thinkers, three advanced undergraduates participating in

a Research Experience for Undergraduates program, four mathematics graduate

students, and two faculty. Each individual was extensively interviewed, with the

interviews being audiotaped, and then transcribed. These transcriptions were ana-

lyzed for evidence of the use of these different schemas, for pointers to more detailed

information, as well as for evidence of reification, through the types of images em-

ployed, the links among ideas, and also through the language used to describe the

concepts. In all, twenty-one concepts were examined. I will illustrate the results by

examining their responses to the concept of basis.

The Concept of Basis

What follows is a short summary interpretation of the nine individuals' re-

sponses.

Beth U.

Beth has only a tentative link between a basis and the general area of algebra,

but she provides no details as to how the concept of basis fits into this area, nor

does she elaborate on any further details about what a basis is. She has not yet

built much of a conception of basis.

Adam U.

Adam links this concept with the area of linear algebra. Once he makes this

connection, he is then able to provide a formal verbal concept definition of a basis

as a linearly independent, spanning set of vectors. When asked about a visual

image, he recalls trying to prove things, rather than evoking any visual image.
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This language, and the absence of any visual image, is indicative of an operational

understanding of basis. He gives a prototypical example of a basis - the standard.

R3 basis, described using the algebraic symbols (1, 0, 0), (0, 1, 0), (0, 0, 1).

Craig G.

Craig links the idea of a basis with Euclidean 2 or 3 space and its standard basis

vectors, He describes having a visual image, but does not elaborate, so it is difficult

to know exactly how he is envisioning this basis. His understanding has broadened

somewhat since he has encountered more general n dimensional space, as opposed

to his initial experience .vith 2 and 3 dimensional vectors in physics. However, even

though he has experienced more general vector spaces, he first evokes the familiar 2

and 3 space prototypical model, indicating this prototype occupies the foreground

in his concept image.

Calvin U.

Calvin links this concept with the areas of linear algebra and topology, indicat-

ing he may be thinking of a basis in two different ways. His visual image of a basis

is of the defining parameters in the basis itself, the algebraic symbolic notation for

representing a basis.

Doris G.

Doris links this concept with linear algebra. She offers several properties of

bases, that any vector in the space can be written as a linear combination of the

basis vectors, end that bases are not unique. Her visual image is of algebraic symbols

{ el e2 } . She describes her understanding as having 'come together' as a result of

a graduate class. Rather than this being a reification event, it would seem that she

has condensed much of the information she has gathered concerning basis, but has
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not reached a fully structural understanding yet. She does not describe any sudden

shift in her understanding, but rather a gradual consolidation of ideas. Her language

is not particularly indicative of any one stage, but her lack of visual imagery other

than algebraic symbols and her lack of any indication of intuitive understanding,

signify that her understanding may still be operational.

Bill G.

Bill links this concept with that of a vector space, in fact in his mind they are

interchangeable. He describes a basis as a set of points, but accompanying that is

a visual image of how they emanate from the origin, and that linear combinations

of them fill out the space. He also links this concept with Galois theory and Galois

extensions. He describes his understanding as having matured, and having split in

two different directions with the introduction of Ga lois theory. This he describes

as a sudden change, but from what he offers it is difficult to know whether this

constitutes a reification of the concept of basis. He may have previously reified the

concept, being so far removed from that event that it is no longer of significance to

him. He is rounding out his understanding and consolidating facets of this concept

from different areas of mathematics.

Andy G.

Andy's prototypical image of a basis is the standard R3 basis, represented

symbolically by I, j, k. He also has a diagrammatic visual it iage of this standard

basis, analogous to the idea of toothpicks emanating from the origin. Notice that

he is using an analogy with everyday objects so that he has a simple language with

which to describe a basis. He also gives an intuitive definition of a basis as 'the

minimum number of objects you need to identify a point in space,' and suggests
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that this understanding of a basis has remained unchanged.

Brad F.

Brad links the concept of a basis immediately with a vector space basis. He

describes it intuitively as a way of representing or 'seeing' vectors, of naming vector

spaces. He has links to many areas of mathematics where this concept is used - in

group theory, in the construction of a non-measurable set, in number theory and in

analysis. He links this with Zorn's lemma in the proof of the existence of a basis. He

describes his understanding as having expanded and changed from his experience

with the concept in different mathematical content areas. This would appear to be

a gradual broadening rather than a sudden shift. Apparently Brad has understood

this concept both operationally and structurally for some time.

Alan F.

Alan clearly demonstrates the most intuitive, structural understanding of this

concept, describing a basis as a 'very fundamental thing'. He describes the concept

using an analogic model, comparing a basis to a set of building blocks sitting on

a shelf, which can be taken down and used to build more complicated objects,

or at least approximations to more complicated objects. It is clear from his use

of language that a basis is an object, used in a process to build more complex

objects, clearly a structural understanding. Note that the image is wholistic, and

clearly connected to some everyday experience, providing a way-station between

the very intricate and complex mathematical structural concept of a basis as an

object, and the operational understanding of a basis as a linearly independent set

of vectors used as a process to represent vectors. This important analogy then

provides the respondent with a rich language with which to discuss the structural
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nature of a basis. His prototypical image of a basis is of the polynomial basis used

for approximating functions.

He describes his understanding as having developed, and that he has come

to realize the importance of a basis. However, it is not possible to point to any

reificaiton event, especially since he explains that he was first introduced to the

concept of basis through the 'building block' analogy. He may well have had a dual

operational structural understanding from the outset.

Conclusion.

For some respondents the concept image of the canonical basis in R3 consists

of a formal concept definition of a basis as 'a linearly independent spanning set' and

its algebraic symbolism. This does not necessarily contribute any image schema to

the concept image. Those who only evoke this type of understanding would seem

to have a predominantly operational understanding of a basis. A more structural

understanding of the concept of a basis requires some intuition about the concept,

which is evidenced in the language used to talk about the concept, and in the

intuitive, experiential images accompanying the concept.
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A SURVEY OF TERTIARY STUDENTS' ENTRY LEVEL
UNDERSTANDING OF MATHEMATICS VOCABULARY

L. Diane Miller
Middle Tennessee State University

Brian White
Curtin University of Technology

Abstract
Mathematics teaching and learning at all levels is an interactive process
dependent upon the understanding of carefully defined terms and symbols.
Particularly at the tertiary level where instruction is traditionally teacher-
centered and dominated by oral discourse, students' understanding of
mathematics vocabulary is vital to their meaningful construction of mathematical
knowledge. This study surveyed 443 students' understanding of mathematics
vocabulary used in entry level tertiary mathematics. Students in 3 classes were
asked to define, in writing, 15 words and 5 symbols. The results indicate that
the students were inadequately prepared for their studies in respect to their
knowledge of mathematics vocabulary and symbols .

Introduction

Mathematics teaching and learning is an interactive process dependent upon

the understanding of carefully defined terms and symbols which name

fundamental concepts. Understanding, in turn, is dependent upon a student's

knowledge of the vocabulary of mathematics. Teachers use mathematics

vocabulary routinely in the instructional process, assuming students have

previously constructed meaningful definitions for words which may have been

introduced several years previously. However, the results of studies conducted

by Garbe (1985), Hanley (1978), and Nicholson (1977, 1980, 1989) confirm that

some students have an alarmingly poor command of mathematics vocabulary.

An increasing body of mathematics education research indicates that

one of the crucial roles of teachers of mathematics is to assist learners to

acquire, in both receptive and expressive modes, the formal language of

mathematics (Ellerton & Clements, 1991). This rr-oonsibility is reflected in A

National Statement on Mathematics for Australian Schools (Australian

Education Council, 1990) and the Curriculum and Evaluation Standards for

School Mathematics (National Council of Teachers of Mathematics, 1989).
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Both documents suggest that a command of mathematical terminology is

essential in learning mathematics and is a part of numeracy. Without a

personally constructed knowledge base of mathematics vocabulary, the task of

reading a mathematics textbook, interpreting a teachers' instructional

commentary, solving a word problem, or communicating ones own knowledge

about mathematics to others becomes extremely difficult for the student.

Background and Purpose of the Study

The failure rates of entry level mathematics classes at Curtin University of

Technology in Perth, Western Australia, are a reported 25-33%. Because

instruction at the tertiary level is traditionally teacher-centered and dominated

by oral discourse, a lack of understanding of mathematics vocabulary may be a

contributing factor to this percentage of failures. The results of a study

surveying secondary students' knowledge of mathematical vocabulary (Miller,

Malone, & Karmelita, 1992) suggested that several students were entering

tertiary studies in mathematics without having an understanding of the

vocabulary used routinely by their lecturers and tutors. The purpose of the

study reported in this paper was to examine entry level, tertiary students'

knowledge of the mathematics vocabulary used by their lecturers in both oral

and written instruction.

Methodology

The three courses surveyed in this study were: MATHS 101 Calculus and

Analytic Geometry taken by students majoring in mathematics, computer

science, or a science like physics or chemistry; MATHS 171 Calculus and

Analytic Geometry taken by students majoring in a field of engineering; and,

STATS 121 - Statistics taken by students majoring in the health sciences or

applied sciences. After attending the first 3 classes of the 1992 academic year
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for each of the three courses identified and reviewing the textbooks used in the

classes, the researcher presented a list of vocabulary commonly and frequently

used in oral and written discourse to the lecturers of the classes and an

indepentent consultant in the Mathematics Department. In group consultation,

fifteen words and 5 mathematical symbols were selected for each course which

students were asked to define in writing. The vocabulary and symbols selected

were representative of knowledge students should have had prior to enrolling in

the tertiary class. They had been used by the lecturers in oral and written

discourse with the assumption that the students did know what they meant.

After the survey instruments were designed, the lecturers for each of the three

courses identified one class to participate in data collection. Approximately 20-

30 minutes were provided at the end of a lecture during which the students

wrote their definitions to the words and symbols.

One hundred twenty-five students completed the survey in MATHS 101,

one hundred ninety-eight in MATHS 171 and 120 students completed the

STATS 121 instrument. The students' responses to the items were read by a

masters student in the Mathematics Department and coded as acceptable,

unacceptable, the students wrote "I don't know" or the item was left blank. After

the responses were coded by the graduate student, the researcher and the

independent consultant from the Mathematics Department reviewed the codes

on each instrument to check for errors and/or discrepencies in acceptability of

responses. When differences of opinion arose as to the acceptability of a

response the researcher and the consultant discussed the student's response

and reached a consensus for coding the item. Another review was conducted

by a different graduate student to check for consistency of coding between and

among classes.
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Data Analysis and Discussion of Results

The instruments were scored by counting the number of acceptable responses.

The researcher simply wanted to know how many of the twenty items students

could acceptably define in writing and to compare the scores by various

subgroups represented within the sample. Thus, means, standard deviations

and t-tests were used to compare the subgroups. The choice of the t-test is

defended on the basis that, even though the various student subgroups

selected may demonstrate the characteristics of a non-normal population, the

sample sizes, together with the robustness of the test ensure that the values of

the statistic obtained approximate "t" very closely.

Because the MATHS 101 and 171 curricula are so similar, the

researcher, lecturers and independent consultant decided to use the same 15

words for both insti jments. Two of the five symbols here also the same. Eight

of the 15 words were also used on the STATS 121 instrument so statistical

comparisons could be made between the MATHS and STATS classes. Tables

1 and 2 (following Conclusion) reflect the words and symbols used on the

instruments with the percentage of acceptable responses shown in the table.

Since it was assumed that the students had prior knowledge of these

words and symbols, the percentage of acceptable responses should have been

high for every item. However, in each of the three classes only about half of the

20 words were acceptably defined by 75% of the students. Table 3 (following

Conclusion) reflects a t-analysis between classes. Only the words that were

common to both survey instruments were analyzed. The comparison of MATHS

171 to MATHS 101 is statistically significant at the .01 level of confidence with

the MATHS 171 students acceptably defining more of the words and symbols

than the MATHS 101 students. In reality, the results can be summarized as the

MATHS 171 students acceptably defining approximately 12 of the 15 items

while the MATHS 101 students acceptably defined 11 of the 15 items.

112
127



Statistically the results may represent a difference in the abilities of these

students to acceptably define mathematics vocabulary in writing. However, this

one word difference may not be meaningful to tertiary lecturers.

The differences between the two MATHS classes and the STATS 121

class are statistically significant and, perhaps, more significant in a "real world"

sense as well. There were 8 words common to the MATHS instruments and the

STATS 121 instrument. In both MATHS classes, the students acceptably

defined roughly 2 more words than the STATS students. It should be reiterated

that the STATS 121 students may not have had the same mathematics at the

secondary level as the MATHS 171 and 101 students; however, equally

important is that the STATS 121 lecturer and the textbook used in this class

assumed that the students had a prior knowledge of these words.

Conclusion

A National Statement on Mathematics for Australian Schools (Australian

Education Council, 1990) and the Curriculum and Evaluation Standards for

School Mathematics (National Council of Teachers of Mathematics, 1989)

promote the need for students to develop common understandings of

mathematical ideas, including the definitions of specialised mathematical

vocabulary. These documents also promote the need for students to be able to

communicate their knowledge of mathematics in writing. This researcher is not

suggesting that vocabulary is the only aspect of language important in

mathematics instruction. However, its importance is recognised in the National

Statement and the Standards. The results of this study indicate that entry level

tertiary students have difficulty expressing their understanding of mathematics

vocabulary in writing.
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1
Table 1
Words by class showing percent of acceptable responses

1. Word/Class MATHS 171 MATHS 101
n = 198 n = 125

tangent 95 85
product 97 97
absolute value 87 82
Pythagoras' Thm 95 87
area 73 74
polynomial 67 67
set 67 58
function 45 46
symmetric 75 67
proportion 66 44
SUM 97 94
quotient 79 67
denominator 95 87
variable 64 71
parallelogram 81 89
(x,f(x)) 76
A(R) =rt R2 87
I a I 62

U,.

1M T = co
64 80

x --+ 0

y = f(g(x)) 90 80

TB 78

t 26

(xi ,Y1,zi ) 91

MATHS 121
n = 120

70
46

54

13
13

85

85
47

Table 2 also reflects the words by class showing the percent of acceptable
responses. It differs from Table 1 in that it shows the words and symbols which
complete the STATS 121 survey.
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Table 2: Words by class showing percent of acceptable responses

.1 Word/Class MATHS 121 MATHS 101 MATHS 171
n = 120 n = 125 n = 198

mean 95
product 70 97 97
absolute value 46 82 87
probability 86
area 54 74 73
median 91
inference 23
function 13 46 45
symmetric 13 67 75
range 67
sum 85 94 97
standard 50
deviation
denominator 85 87 95
variable 47 71 64
mode 77
p(A) 97

xi

95

81

92

59
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Constructing the Derivative in First-Semester Calculus

Bob Speiser and Chuck Walterl

Summary. This paper is about what happens in first-semester calculus when we take

mathematical modeling seriously. Surprising issues surface, about what functions are, about

what we can and cannot learn from real-world data, about how we choose to represent data and

models graphically. The issues we found cut so deeply into our ingrained assumptions that we

needed to rebuild almost completely the way we taught and pictured the derivative, in order to

maintain contact with our students' thinking and maintain a common discourse. This paper is a

short version of a longer work which will appear elsewhere.

Listening to our students pushed us into this. In a nutshell, to take real-world modeling

seriously in the first calculus course, we may need to introduce the basic concepts of calculus with

much more subtlety and depth than may be usual.2 Our rethinking springs from classroom

discourse, triggered by the motion of an actual cat, seen in a historic sequence of time-lapse photos

by Eadweard Muybridge3.

We discussed the cat in a first-semester calculu" course based on the Harvard-Arizona

model.4 We had just completed the first chapter of our text, a review of the elementary

functions through a sequence of mathematical modeling examples. On this particular day, we

planned to motivate the derivative as a rate of change, exemplified by speed. On the one hand, we

expected Muybridge's photographs to provide a modeling problem which involved more complex

decisions than the ones we had already treated. On the other hand, we wanted to explore the extent

to which the concept of instantaneous speed may represent an idealization, reaching significantly

beyond the necessarily discrete data we observe.

I Department of Mathematics, Brigham Young University, Provo, Utah 84602, USA

2 We develop this idea more fully, both epistemologically and in terms of pedagogical implications, in R.

Speiser and C. Walter, Catwalk: first-semester calculus, J. Math. Behavior, to appear.

3 Horses and other animals in motion, Dover Publ. (1985). We learned from David Lomen and

David Lovelock how powerful a stimulus these photographs can be, at this point in the course.

For their version, see Cushing, J. , Gay, D., Grove, L., Lomen, D., & Lovelock, D. , The

Arizona experience: software development and use, in Proc. 3rd Intern. Conf. on Technology in

Collegiate Mathematics (F. Demana, B. K. Waits, J. Harvey, eds.) Addison-Wesley (1992) 41-47.

4 Our text was Calculus, by Hughes-Hallett, Gleason, et. al., Wiley (1993). Our classes, at

Brigham Young University, took place in September, 1993.
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To begin, we projected overheads of the cat photos and distributed photocopies of them.

Next, after a review of average speed, we asked our students to work together on two questions:

How fast is the cat moving in Frame 10? How fast is the cat moving in Frame 20? 5 Because

predators which follow their prey visually, such as cats, are likely to have an evolutionary

advantage if they keep their heads steady as they run, we suggested measuring distance along the

grid from the tip of the cat's nose.°

How fast is the cat moving in Frame 10? We can measure time in seconds from Frame

1, position in centimeters from the heavy grid line just to the left of the cat's ears in Frame I to

the tip of the cat's nose. Here are one investigator's numbers:

frame t=time s=position

9 .248 12.5

10 .279 15.0

11 .310 22.5

Between frames 9 and 10, the average speed is approximately 2.5/.031 = 80.7 etn/sec.

Between frames 10 and 11, however, the average speed is roughly 7.5/.031 = 241.9 cm/sec. Oven

these average velocities, can we reasonably say anything about the speed in Frame 10? Our

feeling is that we can't. We could suggest that the speed might have been between 80.7 and

241.9, but we can't really be sure of that. As we go from Frame 9 to frame 10, the cat's

hindquarters, for example, seem to be moving much more slowly than it's nose. In particular,

how might someone marshal convincing evidence against the hypothesis that the cat, at the

moment captured in Frame 10, was not moving at all?

Contrast this with the situation in Frame 20. There, the average velocities between

frames hardly vary, so we're much more willing to assign an instantaneous speed. One glance at

the photos, several students emphasized, offers further confirmation: the cat appears to be in the

air. Graphing distance against time pswides additional evidence in favor of a linear model for this

part of the cat's motion. Returning to Frame 10, where the average velocities differ so strikingly,

5 At this point we strongly recommend that the reader do precisely what we asked our students

to do, as preparation for the discussion to follow.

6 This decision simplifies. At a discussion of the cat measurements during a talk by Speiser in

early November at Sacramento State, one participant measured from a spot on the cat's

hindquarters, and obtained a wonderfully complex motion. Near Frame 10, it's possible that the

cat's rear end was actually moving backwards.
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the cat's hind legs are firmly placed beneath the body, ready to spring. Between one bound and the

next, what's happening? How can we tell?

If we think of Muybridge's photos as a sequence of motion picture frames, we do have an

unmistakable impression that the cat has a well-defined instantaneous speed at Frame 10. To

sharpen the questions above, what status do impressions like this have? After all, impressions

may well be all our nervous systems give us, though we typically take them to be real. We had a

lively class discussion, contrasting what the pictures showed, what we seemed to think was

happening, and what our numbers might be telling us.

As teachers, we base major decisions on what we prefer to think is a clear sense of what

is obvious. Sometimes this construction, too, breaks down. Two classes after having shown his

students the cat data and discussed its uncertainties, one of the authors (Chuck Walter) walked into

his classroom, drew two points on a curve, and, for the first time, joined them with a secant line.

Following tradition confidently on the basis of twenty years' teaching experience, Chuck

then asked the students to imagine what happens to the secant when one of the two points

approaches the other.

They said they could not do so.

After reflecting for a moment, Chuck asked his students to imagine that the picture

above, instead of being on the blackboard, was now on their calculator screens, and then to

imagine zooming in on the two points as they come together. Wouldn't the curve look straighter

after zooming in? Here is the subsequent exchange, as Chuck remembers it.

"No," said the students, "the curve looks straighter, but we still can't tell you what will

happen, because the curve has thickness."

"Thickness," Chuck asked?

"Yes, thickness," the class responded.

"Is this thickness due to uncertainties?" Chuck asked.

"Yes."

"As in the motion of the cat?"

"Yes," said the students, "we don't really know where the cat is, so we can't say how the

points will come together."

We decided to take Chuck's students seriously, because their doubts were founded, we felt,

on a firm although perhaps not fully explicit perception of the difficulties surrounding the

hypothetical function f(t) and its derivative. What would happen, in this classroom, if we took the

uncertainties in the definition of f(t) more carefully into account?

The first thing we did was to rethink the construction of the tangent line. To take

significant uncertainties about the choice of the model f(t) into account, we first reframed the

118 133



discussion by regarding f(t), not as the actual position of the Lat, but, instead, as one of a range of

possible mathematical models of that position. In this reading, f(t) is a well-defined function,

perhaps even given by a formula. Rather than conflate the cat's actual motion with a particular

model of it, we would attempt precision only after a given function f(t) has been selected from a

collection of reasonable possibilities. In this way we supported our students' preference, based on

earlier class discussion, for keeping explicit the distinctions between motion, measurement and

model.

Next, to avoid zooming, we found a more global way to relate the tangent to the

difference quotient. Our work here depends crucially on a new perception, which our students

supported, about what was obvious about tangents and secants, and what wasn't, in the unfamiliar

psychological world which had unfolded after the cat experiment.

To enter this new world, let's follow our students' suggestion, and imagine a thick curve.

It's important to remember that we typically expect our students to t,elieve that a diagram

not very different from this, for example, represents a parabola. For a parabola, if we move away

from the point of tangency along a given tangent line, we should move off the curve. The picture

we have drawn, however, does not support this "obvious fact."

Is it always best, however, to imagine a curve to be infinitely thin? Let's explore some

possibilities. Here is a road, with y = f(t) as centerline. The road, bounded by the two curves y =

f(t) ± e, determines a ball of radius e in the topology of uniform convergence. To be precise, a

function y = g(t) is in the ball exactly when its graph is on the road.
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A car moves steadily forward, following the centerline. It's tangent line is shown.

We regard the tangent line as obvious here, because it is.7 Indeed, if we're actually

driving the car, the tangent is simply the line between us and the point on the horizon we are

driving toward. That point on the horizon, which is also obvious, represents our direction. We

may not be sure where the road goes as it turns ahead of us, but we are quite sure, at each given

moment, where the car is pointing.

Now imagine two cars, driving toward each other along the centerline, each with its

tangent line. When the cars collide, the tangent lines will, at that moment, coincide. We can use

this simple observation to show that the secant limits to the tangent. Consider the secant as well:

the line joining the two cars, as shown in the next illustration.

Here we have shaded the interior, denoted I, of the angle between the two tangents, as

shown. Now I is the intersection of the halfplane above the tangent at car A and the halfplane

below the tangent at car B. Because the road is on the same side of both tangents (it is concave

up) we see easily, by examining the relevant halfplanes, that one ray from B of the secant line

must lie in I. Because, by the same reasoning, the given ray will remain in I as the cars approach

their collision, it follows that the limit of the secant must be the common limit of the two

tangents, the tangent at the point of collision. This geometric reasoning shows that the difference

7 Thin ice! From what perspective is the tangent obvious? Watch carefully.
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quotient Qh, the slope of the secant, limits to the slope of the tangent as h>0. After working

these ideas out on Speiser's board, we both tried them in our classes. The students agreed,

significantly, that taking a given model f(t) as centerline gave well-defined tangents, and that the

road represented a zone of uncertainty into which the data may be expected to fall.

In other words, if we chose to describe the cat's position by a function f(t), then we must

admit that f(t) is undefined for many values of t. This would lead to conceptual problems, because

a function's values ought to be defined. Hence we reject this view, and emphisize that the cat's

position, for general t, is unknowable. A further choice now follows: to regard the centerline f(t)

as one of a range of possible mathematical models. Hence we take y f(t) as the center of a road

of appropriate size, and imagine other models on the road, along with our data. Each model is a

well-defined function, which might even be given by an explicit formula. At the same time, we

must be clear that the cat's motion took place significantly outside the universe of models. We

regard both the universe of mathematical models and our psychological perception of the cat's

universe to be somewhat independent constructs, which arise together and most strongly interact.

After choosing a model f(t), and working with the secant globally, we found that our

students now felt that they understood what happens to the secant, in Chuck's original picture,

when the two points come together. Returning to the uncertain data which compelled us to

reformulate our presentation of derivatives, our students could finally compare, explicitly, what

they now felt that they understood to what their calculator zooms appeared to show them.

Photo caption: Cat photos by Eadweard Muybridge, at Gentlemen's Riding Park, Philadelphia,

1885. Twenty-four cameras, 5cm grid in backdrop. Time interval: .031 sec. between frames.
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USING A COMPUTER LABORATORY SETTING (CLS) TO TEACH

COLLEGE CALCULUS

likeshinp&raistActim

Mathematics Education, Syracuse University

This oral report will summarize the data collection process and initial

findings of the presenters on-going dissertation study, titled: "Using a

Computer Laboratory Setting (CLS) to Teach College Calculus". For this

study, a CLS is an environment where students learn calculus through

explorations on the computer and discussion about their explorations and

a Graphing Calculator Setting (GCS) is an environment where students

learn calculus with the use of a graphing calculator. Students will be

assigned randomly to work individually or in pairs on class projects. The

research methodology will comprise of survey (questionnaires that

address teaching, learning, and student attitudes) and experimental

design (Randomized Block Factorial design) methods.

This study is designed to answer the following questions:

(i) What are the differences in learning outcomes between the CLS and

the GCS approaches and between different CLS approaches (individual or

cooperative)?

(ii) What are the differences in student attitudes between the CLS and the

GCS approaches, and between different CLS approaches (individual or

cooperative)?

(iii) What are the differences in CLS strategies for teaching college

calculus to students working individually or in cooperative groups?

The objective of this study is to provide information for curriculum

design, policy-making, and teaching of undergraduate calculus, with the

use of calculators and computers.
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A CONSTRUCTIVIST APPROACH FOR HELPING STUDENTS LINK
THE POLAR PLANE TO THE CARTESIAN PLANE

WITH A GRAPHING CALCULATOR
Yvelyne Germain-McCarthy
University of New Orleans

Introduction

I guided students on a journey from the Cartesian plane to the polar plane

by helping them graph polar equations, r = p ± qsine , from their hand sketched

auxiliary Cartesian graphs of, y_ = p ± qsinx. The method provided a good review

for sketching the circular functions from the coefficients p and q and helped

students to connect the two topics.

I extended the method to graphing the polar conics

r = 1/(p ± q sine) and r = 1/(p ± q coso) (1)

directly from the auxiliary Cartesian graphs,

y_ = 1/ (p ± q sinx) and y_ = 1/ (p ± q cosx). (2)

This time, students were encouraged to hand sketch only the polar form (1)

from the graphing calculator graphs of (2). My objectives were to teach students

that the applications of related problems to new ones are conducive to richer

understanding and that in the polar plane, the graphs (1) are conics with

focus at the pole and axis on one of the coordinate axes; When I pi=lql, the

conic is a parabola; I P I> I q I is the ellipse and IPI<IcII is the hyperbola. I

also wanted to help them find differences and similarities between the planes:

Rather than tell students the above information, they worked in cooperative

groups to discover the results. During this process, students unexpectedly

came to terms with contradictions very much like those within a constructivist

framework. The results were students' discoveries which provided clear

examples of the linkages between the planes.
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STUDENT UNDERSTANDING OF DERIVATIVE IN A TECHNOLOGY

ENHANCED CLASSROOM

Michelle J. Zandieh

Oregon State University

What kind of understanding of derivative do high school calculus students

have and how does this understanding develop? In particular, how does it

develop in a classroom in which each student has a powerful graphing calculator

and uses a text designed to take advantage of the multiple representations of

functions that the calculator provides?

Interviews with each student in a nine-member class at five different points

in the school year as well as audiotapes of daily classroom discussions and

copies of written work provide information on student understanding. The

understanding described is not a matter of right or wrong answers to specific

questions about derivative, but rather an attempt to provide a description of the

cognitive structure a student has developed with regard to derivative.

Two particularly interesting threads in student understanding are emerging

from the data. The first concerns the interpretations of the derivative concept that

a student possesses and chooses to use in a particular context. Some examples

of these interpretations are derivative as slope, derivative as rate of change,

derivative as velocity, derivative as a symbolic manipulation and derivative as a

procedure that allows for certain applications. A further question is whether a

student can relate a model of derivative such as slope to the limit definition of

derivative and the details of its notation. The latter entails a fine grained

understanding of the operational and structural nature of several concepts --

difference, rate, limit and function -- as well as how these four concepts are

combined to form the concept of derivative.
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AN EMNRICAL INVESTIGATION OF GRAPHING CALCULATOR USE AND

GUIDED DISCOVERY STYLE TEACHING IN DIFFERENTIAL CALCULUS

George L. Emese

Rowan College of New Jersey

This report describes a three-group experimental study conducted In an introductory

university differential calculus course with the following design. Group 1: Use of graphing

calculators and (guided) discovery approach, Group 2: Use of graphing calculators without

discovery, Group 3: Traditional instruction.

The two major objectives of the study were to verify that students can discover a significant

portion of differential calculus and to investigate the effects of the use/non-use of graphing

calculators and the instructional technique (lecture/discussion or guided discovery style

teaching). The development of interactive graphing technology resulted in a renewed interest in

discovery learning since it facilitates student experimentation and discovery.

In the discovery section, part of the new material was covered using worksheets, where a

chain of questions/problems led to the new concept, relationship, or technique. Students

worked in groups, pairs or individually. They could get help from hint-sheets, solution-sheets,

their classmates and the Instructor.

According to a questionnaire students in the discovery group completed after the final

exam, they found the answer on their own to 47% of those questions on the worksheets where

the answer was not previously known to them. They found the answer to an additional 22% of the

questions with hints from the hint-sheets, from classmates or the instructor. 88% of the students

suggested that some classtime (in average 30%) be spent on discovery style teaching. This

shows that discovery style teaching is a viable alternative to traditional teaching for at least part of

the new material.

Analyses of covariance were used for student achievement comparisons. The scores on

the corresponding subtest of the pretest served as covariates. Statistically significant differences

were not found between the groups on any of the variables. No instructional method proved

superior to the others on comparison.
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Poster Session

Calculus for All:
Simulations for calculus Learning in Middle School

James J. Kaput

Department of Mathematics

UMass Dartmouth

We will demonstrate and discuss with interested parties a new series of
software simulation environments and activities intended to help students in

grades 5-8 (and beyond) develop the fundamental ideas of calculus, the
relations between change and accumulation of quantities. We will concentrate

on motion-based simulations that begin with simple directed motion in an

elevator that makes possible an approach to the Fundamental Theorem of

Calculus, as well as other basic theorems such as the Mean Value Theorems

for derivatives and integrals, in the context of whole number arithmetic. We will

discuss various activity structures and the place of these in a revised "strands

approach" to the mathematics of change that begins in the elementary grades

and runs through high school. For those who are interested, we will make the

software available for testing with students.
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Title : Informal Approaches to Limits Through Topics in K-12 Mathematics Curriculum

Presenter: Brenda Lee

Institution: Wu Feng Instutite of Technology and Commerce

The limit concept is a fundamental concept in mathematics in general and calculus in particular.
However, the limit concept is seldom introduced before students take the calculus. Students
usually first encounter the limit concept in calculus. One or two weeks lectures on the limit
concept does not adequately prepare students for calculus. Whenever one is doing
differentiation or integration, one is finding limits of some functions. The traditional ways of e-6
definition often bring confusion and non-internalization In learning. Thus, calculus becomes the
last mathematics course for most university students. Students who do not complete calculus are
lost to further study in science, mathematics or engineering.

The teaching and learning of limit seems to cause problems for both teachers and students.
However, the mathematics curriculum can provide early limit experiences and the abstractness of
the limit definition will then be made more concrete. As a matter of fact, the concept of limit is
embedded in different topics of mathematics such as numbers, fractions, decimals, functions,
graphs, etc. Many ideas in early mathematics topics can be integrated into activities to enable
students to informally understand the limit concept.

This presentation shows several examples of weaving the notion of limit into the different topics of
the mathematics curriculum. One can show, for instance, how to link fractions to limit by an
informal approach. When teaching the conception cf the size of unit fractions, we can ask
students to fold the different unit fraction bars. This activity can provide the visualized comparison

1

31111of the size of unit fractions. When listing the unit fractions as follow:1' 2 ' ' 4' 5' 6' the notion

of sequences can be mentioned. Since the lengths of the unit fractions in the sequence get
smaller and smaller, students can challenge to think the following questions: what will be the next
term? Will this process goes on forever? How to interpret this infinite processing? What is "..."?
Will the students recognize the limit is zero?

In the above activity,we can also let the students shade the unit fraction bars and place them
successively in decending order, observing that the smaller the unit fractions, the smoother is the
shape of the curve. This not only informally shows students the notion of limit, it also produces an
excellent piece of art work. At the same time, the fraction bars' activity (1) allows students to
estimate the the sums of the shaded areas, thus the notion of partial sum of a series is embedded
here; (2) introduces the upper sums and the lower sums as different ways of finding the shaded
area under the curve which leads to integration; (3)cutting the unit fraction bar into two equal
parts, then cutting one part into two equal parts, and so on, leads to the notion of infinite process;
(4) the continuation of this half division process also leads to the notion of infinity; and last but not
least (5) when the denominators of the unit fraction bars get larger and larger, the notion of
arbitrary smallness could be introduced as well.

The difficulty of accepting the existence of the "final product" ( if this "final product" exists) of an
infinite process and the actual infinity is universal. However, if the proper activities were
investigated; the arousal of curiosity of minds would be created; the experiences of something
that could get nearer and nearer to a fixed something, no matter how close you wish it, would be
internalized; and students probably would be more comfortable when they enter the calculus
classes.
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VISUAL SALIENCE IN ALGEBRAIC TRANSFORMATIONS

Thomas Awtry and David Kirshner

Louisiana State University

This study establishes that beginning algebra students are dependent on visual aspects

of algebra rules, and that this tends to inhibit the development of a propositional base for the rules,

A qualitative analysis suggests that the visual salience of rules depends on two factors: repetition

of symbols from the left to the right side of the equation; and dynamic visual tensions created by

the parse of the left-hand expression resolved in the right-hand expression.

An aesthetic analysis of transformational rules in algebra might lead to the observation that

some rules are visually coherent and appealing (e.g. (x Y)z = xYz and (._.xy )(....w) xyw ), whereas
z z

others are not (e.g. (x y) 2 = x 2 2xy + y2 and x 1
). In the past we have proposed that

there is a continuum of visual salience in which transformational rules fall (Awtry, 1993) and that

visual salience is relevant to problems of students' learning of rules (Awtry, 1993; Kirshner, 1989b).

Thifl approach to the visual structure of students' algebraic knowledge diverges from traditional

perspectives in cognitive science which hold that rules are acquired in propositional form (e.g.,

Anderson, 1983) and only subsequently automated through visual adaptations. This paper will

focus on a qualitative analysis of visual salience using students' interview protocols as support.

Methodology

In order to investigate whether visual salience is related to students' learning of rules, a

replication of Awtry (1993) had twc groups of algebra novices (grade 7 students) memorize eight

rules, four of which we judged to be highly visually salient (visual rules):

2(x - y) = 2x - 2y (xy)2 x y

y z yz

The other four rules lacked visual salience (propositional rules):

x2 y 2 = (X y)(x y) (x - y) + (w - z) = (x + w) (y + z)

(X 1) 2 = (X 2 2X) + 1 x(y I) - x

We used specialized versions of ordinary algebra rules to balance crucial characteristics

of the two rule types (i.e., number of parentheses, constants, and operations).
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The rule set was given to one group of students in ordinary notation to learn. The second

group of students was given the same instructional unit using tree diagrams instead of ordinary

notation, Tree diagrams present the same propositional content of the rules, but distort the visual

characteristics that might lead to visual salience in ordinary notation. For instance, (xy )(w) -
yxwz z

and (x - y) + (z - w) (x + z) - (y + w) are nearly identical in their structure; however, this similarity

is apparent only in tree notation (Figure 1):

M D A S/\ /\ i\ /\
D D = M M S S . A AI\ /\ /\ /\ /1 /1 /1 /1xy wz x wyz xyz w xzy w

,w,
Figure 1. Tree Notation Representations for ly/1z)

xw
and (x - y) + (z - w) (x + z) (y + w)

The capital letters indicate the operations of the expressions, and the hierarchy of the operations

indicates the parse. The difference in visual salience between the rules that is so apparent in

ordinary notation is lost in tree notation.

Students' mastery of the rules was assessed at two different levels. Recognition tasks

presented the student an expression with five other expressions, only one of which could be

derived from the given expression by a lawful application of one of the taught rules (e.g., for the

rule (xy) 2 = X y 2 the left-hand expression (5x) 2 was given with the choices (5x)2, 5x2. 52x2, 5x2,

52x , and "none of these.") The subjects' response of 52x 2 may reflect a (relatively superficial)

pattern matching understanding of the rule in question.

Rejection tasks also presented an initial expression with five alternatives; however, in this

case none of the alternatives was derivable from the original expression by lawful application of

an algebra rule. Rather, each rejection task presented a near deviation from a lawful rule, For

example, the initial expression x2 + y2 together with an alternative expression (x y)(x + y)

constituted the rejection task item for the valid rule x2 - y, = - y)(x + y). Choosing the correct

"none of these" alternative for such items would reflect a deeper understanding of the limits and

constraints of algebra rules.

Students in the two groups were given identical instruction and tests, except for the

notational form in which expressions were represented. A nonparticipant observer was present to

record extraneous factors which might discriminate outcomes, but no such biases were reported.

Results

Posttest and retention test results showed that visual salience is a proactive feature in

algebra learning. A table of mean percentages for recognition tasks on the posttest ari retention

test for the rule type by treatment interaction is provided in fable 1.

1
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Table 1.
Recognition Task Posttest and Retention Test Percentages

POSTTEST
VISUAL PROP

RETENTION TEST
VISUAL PROP

ORD 73 40 69 35

(56)* (56) (52) (52)

TREE 49 56 47 53

(58) (58) (53) (53)

* Values in parentheses represent number of subjects within cell

Although in tree notation the visually salient rules and propositional rules were equally difficult to

master, in ordinary notation the visually salient rules were significantly easier to master than the

propositional rules at the superficial recognition (pattern matching) level (p < .0001 on both the

posttest and retention test).

A table of mean percentages for rejection tasks on the posttest and retention test for the

rule type by treatment interaction is provided in Table 2.

Table 2.
Rejection Task Posttest and Retention Test Percentages

POSTTEST
VISUAL PROP

RETENTION TEST
VISUAL PROP

ORD 13 20 8 16

(56)* (56) (52) (52)

TREE 15 11 13 7

(58) (58) (53) (53)

* Values in parentheses represent number of subjects within cell

The visually salient and non-visually salient rules were again equally difficult to master when

presented in the tree notation, but in ordinary notation the visually salient rules were more difficult

to constrain given the opportunity for overgeneralization presented by the rejection tasks (p < .005

for the posttest).

We conclude that visual rules are more easily apprehended at a superficial recognition

level because of their visual salience. But, because visual rules are learned more easily, learners

have riot had to wrestli with their underlying propositional meaning. Thus visual rules are less

easily understood in the propositional terms that might constrain their overgeneralization.

These results, obtained in a brief treatment with algebra novices, help to explain the

persistence of school curricula that provide students with endless repetition of algebra tasks, but

with little meaningful discussion of structural categories. Such curricula provide the opportunity to
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assimilate the visual patterns of algebra, but unfortunately, without the mastery of structural

categories that might forestall the epidemic of rule overgeneralization errors (Carry et al., 1980;

Davis and McKnight, 1979; Matz, 1980; Wagner et al., 1984).

Qualitative Analysis

The rest of this paper will focus on a qualitative analysis of visual salience. Whereas

several past studies (Davis, 1979; Kirshner, 1989b) have explored visual aspects of algebraic

transformations, our discussion extends these previous explorations to the mechanisms for visual

salience of transformational rules.

This replication of Awtry (1993) suggests that visual salience is intrinsic to certain rules,

but not others. We suggest two basic characteristics underlie visual salience, both of which must

be met: (1) repetition of elements; and (2) some sense of a dynamic visual displacement of

elements. Subjects in an extensive pilot study were interviewed about the characteristics of the

rules that they found easy to learn and those they found difficult to learn.

Repetition of Elements

Repetition of elements is the reoccurrence of elements on the left and right sides of a rule.

This repetition is necessary (but not sufficient) for a sense of visual continuity for the rule.

Repeated elements can include alphanumeric symbols (representing operations, variables, and

constants) as weIi as the visual characteristics like wide spacing and vertical or diagonal

juxtaposition that Kirshner (1989b) found to be related to parsing competence. For example, the

repeating elements of the visual rule a(b + c) = ab + ac

juxtaposition, and wide spacing.

Consider (x m)" = xm" and xmx = xm " . Both are visual rules, but the second rule

are, "a," "b," "c," "+," horizontal

violates the repetition of elements condition by containing an additional plus sign on its right-hand

side. This yields the prediction that the second rule would have less visual coherence than does

the second. We propose there is a continuum of visual salience on which transformations rules

fall.

The absence of the repetition of elements condition seems to stimulate propositional

reflections about the structure of some rules. For instance, one subject pointing to the rule

(x - 1) 2 = 2 2x) + 1 said, "I [keep thinking] you're to multiply one and two .. . and subtract one

[italics added]," indicating the desire for repetition of the subtraction. Referring to the same rule,

another subject said, "You have to remember to add the one and not subtract it and not multiply

134151



it." Another student found the difference of squares rule difficult "because you don't put any twos

in it. I always think there should be some twos in there [on the right side of the equation]."

Indeed, more elaborate semantic connections spring up to deal with absence of repetition

of elements in a transformation. For example, one subject thought the difference of squares rule

was easy to remember, since "the two [square] tells both of them [the x and y] to double each

other and [you] just put minus and plus and put them in parentheses." The subject in trying to

learn this (propositional) rule has found it useful to refer to the meaning of the element "2," (though

this reasoning is unrelated to valid mathematical deductions).

Repetition of elements is not sufficient, however, as can be observed by comparing

,

y
X,, W, XW

and (x - y) + (z - w) = (x + z) - (y + w). Both of 'hese rules involve element
z yz

repetition, but only the first appears to have visual salience.

Visual Reparsing of Elements

We suggest that the first of these rules contains the more elusive second characteristic of

visual salience - some sense of a dynamic visual displacement of elements. That is, a visual

reparsing of elements is at work here. The parse of the left hand side of a rule serves to create

boundaries that are broken down on the right hand side. A resolution of tension permits access

to previously cloistered elements of the left-hand expression.

Several of the distributive rules we observed in the algebra repertoire seem to obtain a

sense of visual cohesion from such visual reparsing. For example, in c(a + b) = ca + cb and

(ab)" anb" ' re is a tension created by the cloistering of the "a" and "b" on the parse of the left-

hand expression that is resolved in removing the parentheses on the right.

One subject when interviewed said 2(x - y) = 2x - 2y was easy to learn because "when you

take off the parentheses, you just push ... put it together with the things inside and keep the minus

sign." The same subject also said (xy) 2 = x 2y 2 (a form of (xy)z x zy z) was easy, because "you

remove the parentheses and leave one two where it is and put another one between the x and y."

When asked how he knew to put a "2" on both variables, he said, "because its already close to the

y and I put it on the x because its automatic when I put it on the y. I know its suppose to be on

the x when I put it on the y." The subject seems to have a visual reparsing algorithm that

dynamically transforms the left side of a rule into the right side.

The rule (xY)z xYz presents a somewhat different type of visual reparsing. Although there

is an incursion into restricted territory, the attachment stops with the closest element, instead of
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bonding with all cloistered elements. Thus the "z" bonds with the "y," but not the "x." Note that

this notion of visual reparsing is distinct from ordinary reparsing, in that it is not the actual

operations that are preserved in the reparse, but only their visual character. Thus(xY)z - xYz

changes the exponent operation that connects "xi" with "z" for a multiplication between "y" and

"z," but the visual characteristic of horizontal juxtaposition is retained (Kirshner, 1989a).

One subject marked (xi)-1 xi as easier to learn than x(y-1) _x , "because the y is

up with the negative one and all you have to do is bring it up (italics added) a little bit more and

put a decimal between them as multiplication." Another subject referring to the former rule said,

"On this one all you do is just take out the parentheses and in this case, multiply." Both subjects

seem to be describing the visual reparsing feature of the first rule.

x w xw,

yThe rule z

,

yz is another rule in which elements bond only with those elements

closest to them. One subject claimed it to be the easiest rule, because "all you have to do is

connect that line and take off the parentheses." The subject has verbalized a visual reparsing

algorithm to dynamically transform the left side of the rule into the right side by removing the

parentheses elements and horizontally juxtaposing the numerators and denominators.

Rules with an absent visual reparsing of elements are harder to learn. One subject

working in ordinary notation stated some rules were harder because "you had to change so many

things," whereas for easier rules "you just had to do the same thing. You hardly do anything." The

difference of squares rule was rated as being hard, for example, because "you have to change all

of it" and "whenever you get finished with the answer, it doesn't look anything like the rest of it."

Although x(y-') _x is short in length, it was said to be hard, because "you have to change it,"

in comparison to the slight visual change of (xi)-' xi .

Discussion

The notion of a visually-based cognition of algebra contradicts most cognitivist approaches

to mind that work backward from the meaningful contexts of expert knowledge to a hypothesized

conceptual ontology. Instead, this perceptually based approach is consonant with the challenging

parallel distributed processing models (Cohen, Servan-Schreiber, & McClelland, 1992; Rumelhati,

1986) which see pattern completion as the fundamental cognitive building block. This qualitative
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analysis of visual salience attempts to contribute to an understanding of the perceptual substrate

of cognition.
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Preparing Students for Algebra: The Role of Multiple Representations in

Problem Solving

Maly_ELkenner_ and Bryan Moseley

University of California, Santa Barbara

This project was designed to examine the proposition that conceptual

understanding of basic mathematical ideas is enhanced when students see the

concept embodied in many different ways in the context of problem solving. A

two week curriculum was developed to introduce prealgebra students to basic

concepts about variables, expressions and one variable equations. The data

collected included pm and post-test think aloud protocols from a sample of

students in experimental and control classes and a final written test from all

students. Experimental students showed more use of representations and

equations and fewer syntactic translation errors. The control class students were

better at solving equations and equal or better in general problem solving.

Background and Rationale

The study of algebra entails a major cognitive transition for students who

have previously only studied arithmetic and related areas in the elementary and

middle school curriculum. A major difference between arithmetic and algebra is

that algebra requires students to use new and more abstract forms of

representation of mathematical ideas and operations. The transition to this new

form of representation is seldom directly covered in mathematics classes (Kieran

and Chalouh, 1993) and appears to underlie many of the misconceptions that

impede student progress in algebra (Matz, 1982).

Research in the early learning of algebra reveals four major areas in which

students exhibit misconceptions (Booth, 1988), three of which are particularly

important to this project: arithmetic relationships, algebraic symbols/conventions,

and focusing on answers to the exclusion of meaningful relationships. For

example a student might have difficulty in any one, or several of these areas
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such as: undoing the arithmetic operations, or not recognizing that '4b' means 4

times b, or interpreting algebraic expressions as meaningless because they do

not fit the student's concept of 'an answer'. Highlighting these common

cognitive obstacles (Herscovics, 1989) has led to theories about the underlying

mechanisms that can be implicated in the formation of misconceptions.

Increasing attention has been focused on the possibility that these three

areas of misconceptions stem from a tendency to perform direct syntactic

translations of words into mathematical symbols. Students using this approach

would exhibit an algorithmic orientation, primarily focusing on a simple left to right

mapping of each word to its corresponding symbol. Reliance on this method has

the potential to impact each of the three areas of cognitive obstacles. It is

hypothesized that such an orientation would foster a lack of understanding as to

how mathematical symbols function within the structure of algebra, and therefore

lead to misconceptions (Herscovics, 1989).

Another contributor to students' formation of misconceptions may be a lack

of skill at translating between different representations of a problem, either

mathematical representations or real world situation. Resnick and Omanson

(1986) found that many students lack comprehension of the connection between

arithmetic algorithms and physical representations of the number system such as

base ten blocks. At higher grade levels word problems are included in textbooks

as the primary way in which students are expected to relate mathematical

concepts to real world problems. Word problems are difficult for older students

because they are not sure how to translate a verbal problem into a mathematical

situation (Mayor, 1987). A contributing reason for the difficulty is the disjunction

between the everyday experiences of students and the examples and

applications used in algebra and prealgebra classes (Mellin- Olsen, 1987; Moses,

Kamii, Swap, & Howard, 1989).
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Research design and methodology

The project took place during the Fall of 1993 within 3 existing seventh

grade classes at a junior high school in southern California. The same teacher

taught two classes with the experimental curriculum and one control class with a

traditional prealgebra curriculum based upon a textbook.

Students in the experimental class worked in cooperative groups of

approximately four students, sometimes to produce a joint product, sometimes on

individual tasks. The experimental curriculum featured problems based on the

theme of running a candy store. Algebraic concepts and notation were

introduced after the students had spent some time exploring a situation in which

the algebra was appropriate. For instance, on the third day of the curriculum

students were given a simile of a store's order form for candy making supplies

and a simile of the invoice form for what was received. Each ingredient was

ordered at least five times. For each ingredient there was a systematic error

which was attributed to a computer malfunction. Each cooperative group was

assigned the task of discovering the systematic error for one ingredient and

writing to the supply company to describe the error. In their letters the groups

had to present the evidence in the form of a table, graph or equation that

demonstrated the nature of the computer malfunction. After each group

presented its results to the whole class, the teacher introduced the notation for

variable expressions as a parsimonious way of representing the patterns

described in the letters.

The textbook used in the control class emphasized symbol manipulation

and the translation of English phrases such as "five times eight n equals thirty-

six" into mathematical equations. The students did only a few word problems.

All students were given a written post-test which covered the traditional

symbol manipulations skills as well as items on translations between different

forms of problem representation. The written test took two class periods. In
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addition, a sample from each class consisting of eight students balanced for

gender, prior achievement and ethnicity was interviewed at the beginning and

end of the unit, for a total of 24 students. The questions probed students'

comprehension of the nature of variables and equations and asked them to

solve a number of problems using a 'think-aloud' procedure. Each student was

interviewed individually by a researcher and all interviews were audio taped.

Data Analysis and Results

In this presentation, the post test interview data and written final

examination data are used to address the following questions: 1) Do students

from the treatment and control groups understand the meaning of symbols (e.g.

variables, equations) differently? 2) Are the students able to link the symbols of

algebra to different representations? 3) Are the students in the treatment group

better able than the control students to represent word problems with symbols?

4) Is the treatment group able to manipulate symbols as well as the control

group?

Quesl[on 1 Students' understanding of the written symbols were assessed

in two ways. On the written exam students were asked to translate phrases and

sentences from English into mathematical symbols. Two of these questions were

written so that syntactic translation would result in errors and more meaningful

interpretation of the words was necessary to accurately answer the questions.

Although both groups of students made equal numbers of errors, it was almost

exclusively the control class that used syntactic translation on both questions.

On question 7 (three less than twice b) 71% of the control class errors were due

to syntactic translation as opposed to 28% of the experimental class errors, a

statistically significant difference (Pearson's chi =8.06, p<.005). A similar result

was found on problem 9 (two less than the product of x and 9 is 16) in which the

relative proportions of syntactic translation were 65% and 24% (Pearson's

chi.7.4, p<.01).
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A qualitative analysis of the post-test interviews also showed more sense

making efforts on the part of the experimental class. Although both groups of

students displayed misconceptions about the structure of algebraic notation,

substantive differences were observed when the types of misconceptions and

depth of responses were analyzed. Members of the control class generally

responded with terse, answer oriented responses, which emphasized algorithms

for solving equations. One control class student, when asked to describe the

meaning in an equation said "I guess the you would need another number...the

number that you would multiply to get that, the answer." In contrast a student

exposed to the experimental curriculum unit responded saying "this is one that

you would have to find out what the x means."

The greatest differences were found as the students attempted to interpret

the meanings of variables in equations and expressions. Members of the control

class were more likely to respond that they "would have to have the answer"

before they could be comfortable ascribing meaning to a variable. Although the

experimental classes also showed hesitancy in assigning meaning to the

variables, they were able to give examples that included real world situations.

For '4b' a student said "(It) could be four of a certain thing, like, 'b' could be

books. You could have four books of a certain size..maybe it could stand for the

area of a book." Students in the experimental classes showed a greater

tendency to use objects in their responses, and to use the letters as labels for

entities, as opposed to numbers.

Question 2 In answering two word problems, the experimental group

showed a larger tendency to employ other forms of problem representation, e.g.

graphs, tables, etc. in their solution. On the first problem 20% of the control class

used a representation while 50% of the experimental students did (Pearson's

chi=4.77, p<.05). A similar trend was found on the second word problem with

55% of the control class using a representation and 74% of the experimental

159
142



class (Pearson's chi=1.95, p<.20) although this difference was not staticstially

significant. In addition to using other representations more often, the

experimental classes used a wider variety of representations including drawings,

linear graphs, number tables, pie graphs, and number lines. The control class

only used tables with the problem information on the first word problem and

drawings on the second problem.

Question 3 The experimental classes were also more likely to use

'equations when solving these two word problems, although the difference did not

reach significance. The experimental classes used equations on 74% of the first

problem and 50% of the second problem while the control classes used

equations 55% and 35% of the time respectively.

Question 4 Although the experimental classes showed more apparent

efforts at sensemaking on the measures described above, the control class was

better at solving equations. The control class successfully solved 87% of the

equations while the experimental class only solved 55% of the problems. The

experimental classes poor performance was duo in part to a lack of practice and

in part because one topic (inequalities) was not covered fully due to time

limitations.

Conclusions

The experimental curriculum showed some impact upon students'

sensemaking in basic algebra topics. However, students' efforts to contextualize

their algebraic problem solving through the use of other representations and

equations did not result in improved performance on these questions. In

addition, the students in the experimental classes showed markedly poorer

performance in traditional symbol manipulation skills.

The curriculum itself and its implementation need improvement. Some of

the activities did not flow smoothly while others overestimated students' graphing

skills. The students themselves needed time to become accustomed to working
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in groups on more open-ended activities. In addition it was very difficult to design

meaningful activities that embodied very simple uses of variables and equations.

In addition, the problem solving approach totally de-emphasized direct

instruction and practice in symbol manipulation. We don't feel we found the right

balance between problem solving and exploration of a new topic, and

opportunities to practice new skills.

Finally, this study did not attempt to explore which kinds of representations

actually facilitated student understanding of the algebraic concepts. Each new

problem employed a different representation and did not build directly from the

prior day's work. A more extended curriculum on this topic is being designed in

which students will work for a week or more with one kind of representation ,

perhaps in the context of problem solving situations which take more than one or

two days to complete. This new curriculum will also be used with a larger

number of students taught by more teachers and there will be more control

classes.
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INTRODUCING ALGEBRA WITH PROGRAMMABLE CALCULATORS.

Tenoch E. Cedillo Avalos

Universidad Pedagogica Nacional, Mexico.

Abstract. The research is focused on. the role of programmable calculators as a

tool to introduce the algebraic code. It was implemented in a class with 23 children

(11-12 years old) who had no previous algebra instruction. Empirical evidence

shows that calculators help to create a mathematical setting that allows children to

acquire the algebraic language as a tool both, to negotiate problem solutions and

to explore and justify generalizations. The report addresses issues concerning the

theoretical approach and its influence on children's achievements.

Introduction

This research is developed around the following conjecture: Computing devices which use

as programming code a symbolic language like the algebraic symbolism, may be used to

create an Algebra Acquisition Support System (in Bruner's sense). A system that helps

children learn different uses of algebraic language, without previously having to learn its

syntax rules and structure, just by using it, as one learned the mother tongue and most of

its different uses (Cedillo, 1992).

In terms of this research, let us suppose that we have a sensible way to make

children experience programming, so several questions arise. Whether the arithmetic

background the children have before facing algebra is either constitutive of the language

they are about to learn, or whether such knowledge even provides any clues to the

aspiring learner about the formal structure of the new language? To which extent such

experience may help children learn rudiments of algebra and to use them to explore and

justify general number relationships? These questions served as guiding lines for this

research. The way in which the learning environment was arranged is what I have called an

Algebra Acquisition Support System. Its relation with the learning of natural language is

discussed in the following section.
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Theoretical backgroui,

I will first discuss the points that led me ilopt the acquisiticn of mother tongue as

theoretical framework. The calculator gramrning coce offers two modes of

representing a numerical relationship. 0 .e is the analy:ic: representation of the

programming expression. The other takes place when one runs a program, doing this for

several values produces a table formed by inputs and outputs. These calculator features

may be exploited to design tasks connectin; arithmetic with algebra. For instance, once

the children have grasped that a program consist;; of a series of arithmetic operations

performed on a given value to produce an or tput, we can ask thew to make a program so

that it reproduces a given table.

In doing this, children are using the programming code as the language the

calculator "understands". Here arithmetic plays the role of a clue-giving source. These

tasks provide an environment within which the language used is so strongly attached to

the content that it can permanently be checked by means of the content. This strong link

between form and content constitutes as well a major feature in learning the mother

tongue. For the intended learner, it would be even impossible to handle the linguistic form

without content support.

The approach taken in this research is heavily influenced by the pragmatics facet of

natural language acquisition. Pragmatics entails quite different processes from those

involved in being master of a set of syntactic or semantic codes. Pragmatics may be seen

as the study of how speech is used to accomplish social ends. Its elements "do not stand

for anything: they are something" (Bruner, 1982, p.7). The view that language acquisition

depends upon interaction as the clue-giving source has several variants. To this respect

Bruner (1983) proposes that the adult plays a major role. The adult him/herself may

arrange the environment and him/her encounters with the child in ways to scaffold

language input and interaction to make it better fit the child's natural way of proceeding.

These ideas roughly describe what Bruner calls a Language Acquisition Support System.

Bruner's investigations led to the hypothesis that in order for the young child to be clued

into the language, he must, first enter into social relationships of a kind that function in the

146 163



manner consonant with the uses of language in discourse. That relationships are called

formats. A format is a rule-bound microcosm in which the adult and child do things with

each other. Since formats pattern communicative interaction between infant and caretaker

before lexico-gramatical speech begins, they are crucial vehicles in the passage from

communication to language. Bruner's investigations suggest that formats "eventually

migrates from their original situational moorings" and are generalized to new activities and

settings (p. 121).

Method

Setting. A group with twenty three children (11-12 years old) took part. According to the

Mexican Curriculum algebra is taught until the next course, so these children are not even

supposed to have algebra instruction. Each child was given a calculator from the beginning

of the course where the researcher played the role of the teacher throughout the course.

The experimental stage took six weeks, three sessions per week (50 minutes each). The

activities were delivered as worksheets trying to let children work at their own pace.

Subjects. Eight children were chosen as case study subjects according to their prior

mathematical attainment. They were chosen as follows: (i) above average (one boy and

one girl), (ii) average (two boys and two girls) and, (iii) bellow average (one boy and one

girl).

Tasks. The programming code structure determines its content and the sequence tries to

mirror the Bruner's concept of format. The tasks are grouped in six sets that I

call "formats". Format 1 contains the "raw material" which in Formats 2-6 is

further elaborated. Format 1 introduces the children to the use of expressions

containing letters as a mathematical language that makes them "control the

calculator so it do what they want." The activity is delivered as a game like

"guess my rule" (Rojano and Sutherland, 1993). Its global structure is the

following: Given a table (simulating the calculator screen) children are asked

to (i) find out the rule and somehow express it, (ii) make a program that produces the

2

5

9

9

5

11

19
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same table and, (iii) fill in another table using their programs. All the proposed tables were

generated by linear functions. The task's sequence is briefly described bellow.

Format 2 Children are asked to design items like the ones in Format 1. The tasks are aimed at

making children think of a program before visualizing a number pattern.

Format 3 To find out two or more different expressions for the same rule.

Format 4 Given either a table or a programming expression, children are asked to find out both

the direct and the inverse programs.

Format 5 Problem situations that involve whole-part relationships (e.g. to find out the box of

maximum volume built up from a given squared piece of cardboard)

Format 6 Problem situations involving related variables (e.g. "all the windows in certain

museum have these characteristics: the wooden frame costs $12 per meter and the

with is 50 cm. less than four times the length ...4how much ...?")

Data collection. The eight case study children were interviewed four times each. One

prior to the study, two at thy, middle and one at the end. Other sources of data were

everyday written children's work and notes wrote down each session..

Results

Children's achievement was observed according to the following categories. (i) Syntax:

how children come to make utterances that conform to algebraic syntax rules, (ii)

Semantics: how children refer and mean when using algebraic symbolism, and (iii)

Pragmatics: how children get what is requested or grasp deeper information about a

problem situation by using the algebraic code.

Syntax. A remarkable outcome, I think, concerns the children's acceptance of priority of

operations and the use of parenthesis and as conventions. That is, as constraints imposed

by the formal code they were using. I will try to make this clear. The use of brackets

appeared as a children's need when they were creating number patterns for a fellow to

guess (Format 2). Several children asked questions like: "I want the calculator to add 1

first and then multiply it by 2 ... I typed A+1 x2, but it does not work, Why?". I told them

why and how to do it by using brackets. After a while a number of children were using
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brackets too. Later, dealing with inverting programs, they rarely used brackets to explain

me what they did. Contrastingly, they always used brackets when programming the

calculator. I asked them why. The following is a representative answer: "I do not think as

a calculator does... neither you do ... so you can understand me ... if I want the calculator

to understand me I must use parenthesis ... otherwise it makes a mess."

Even more, it seems that as the children gain further insight into the language as a

codified syst6m of representation, they come to operate not on concrete events, but upon

possible combinations derived from operations on the language itself. The following

episode illustrates this. The child was trying to invert the program Ax2-1. She made two

programs: A÷2+0.5 and (A+1)÷2. When I asked why she said: "I found A÷2+0.5 because

I new it was needed to divide by two, then I just adjusted the result adding 0.5. Then I

saw that using brackets I could use the same numbers as the ones in the first program ... I

thought it was better ... I did not need to adjust anything." From then on she used brackets

to face similar items. I want to emphasize here how naturally the children made sense of

conventions. For them using letters or considering the priority of operations to insert

parenthesis are just means to communicate formally their own way of reasoning.

Semantics. Due to the nature of the activities the notion of variable was always present.

Children showed from the very beginning they have grasped that a letter serves to

represent "any number," that the choosing of a letter does not affect the essence of a

program, etc. However, children's notion of variable and of the sign system in which it is

embedded reaches a much higher level when they were "pushed" to operate on the

programming expressions. It seems that it is the fusion of the dual nature of symbols in

algebra (to represent and operate) that makes children gain awareness of the role of letters

as variables and its power to deal with generality.

During an interview the child wanted to type the program Ax4. Unwittingly he

typed Ax3. I asked him to correct without deleting what he had typed. His first attempt

was Ax3 :-1. He realized that "it works only for 1" (for A=1). "If I put 2 it only works for

2 If 3 ... for 3. Then he shyly said "may it be Ax3+A? He then run the program and saw

149 166



it was right. When I asked why he was so insecure he said "I thought it was not possible

(it was the first time he dealt with this)... I already had 3xA... it changes as I put a number

... I needed to add a number but it changes too ... at once as 3xA ... so it must be another

A. Later he proudly showed me programs he "had made shorter" (e.g.

Ax10001+Bx1010+Cx100 as a simpler form of Ax 10000+Bx 1000+Cx 100+Bx 10+A, a

program to produce five digits palindromes). It suggests that with the development of a

sign system a second feature is added: language can then operate intralinguistically in the

sense that signs can point to or be related to other signs.

Pragmatics. The following questions were asked to the eight case-study children during

interviews. 1. What do you think about? A pupil from other class says that: (a) A2 +B2 =

(A+B)2; (b) every time he sums two consecutive numbers he gets an odd number; (c)

Observe the sequence 5, 9, 13, 17, if you continued putting numbers in that list, would

you find the number 877? 2. Choose any number between 1 and 10. Add it to 10 and write

down the answer. Take the first number away from 10 and write down the answer. Add

your two answers, may I guess your final answer? It is 20. Can you explain how could I

know it?

These questions do not, or not explicitly, relate to number relationships arranged in

a table. It is supposed that the only recourse the children can use to face the questions are

the notions they may developed about variation and letters as computing symbols.

Question la: The eight children made sense of the expression and faced it using numerical

examples. Question lb: The eight children explain it by specific cases. When asked for a

more general argument, six of them made a program (like B+B+1). Two from these six

children used the expression to explain: e.g. "see, B+B gives always an even number ...

then you add 1, it gives always an odd number". Question lc: Only four of the eight

children could give an answer. They did it by programming the calculator. One of these

children first gave an answer by finding the pattern ("I saw that 5/4, 9/4, 13/4 leaves 1 as

remainder ... 877/4 too). Then she made two programs. Ax4 +l "to go ahead the

sequence" and (A-1)+4 "to find out the place a given number has in the sequence".
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Question 2: The eight children explained verbally "the trick". Four (two distinct from the

four children in question 1c) made a program to convince me: "you are adding nothing...

see ... A+10 + 10A (pointing at the A's) ... it will always give 20.

Final remarks.

This research draws a promising sight about the use of calculators but there are various

aspects that deserve attention. Although the experimental tasks and the novelty of using

calculators seemed to be motivating, the case is still far from being on the case of learning

a natural language. Its acquisition process is characterized by a children's willing receipt,

which, in general, is no the case of mathematics. Children's success strongly depend on

their arithmetic background. Despite the computing support that calculators provide,

children with a weak arithmetic could hardly face the proposed tasks. Finally, I think is

interesting to investigate whether these children present or not the arithmetic-algebra

dissociation found by D. Wheeler (1989) and new possible implications derived from an

approach like this.
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SUMMARY
Algebra takes its power from the ability to manipulate algebraic expressions

without referring continuously to their meaning. But, this power is also the very
source of the main difficulty to teach algebra: some students never refer to any
meaning. We call them `blind calculators'.

In the first part of this paper, we will propose a theoretical framework for a
better understanding of these students' attitudes, based on the notion of
`denotation' (Frege,1892).

In the second part, we will present a key to start up an actual dialogue on
meaning of symbolic expressions with a blind calculator, called the 'Write
False' interview, based on the "symptom prescription" method (Watzlawick,
Bea vin & Jackson,1967).

BLIND CALCULATORS AND DENOTATION OF ALGEBRA
SYMBOLIC EXPRESSIONS

As many authors (Bell, 1993; Boero, 1993; Drouhard, 1992b; Kieran, 1991...)
noticed, algebra takes its power from the ability to manipulate ("transform")
algebraic expressions without referring continuously to their meaning (Leibnitz:
"blind calculation"). But, this power is also the very source of the main difficulty
to teach algebra: some students never refer to any meaning and become 'blind
calculators' forever. This phenomenon is also described by Linchevski & Sfard
(1991) as "pseudostructuralism".

Most studies (see for instance Sutherland & Rojano, 1993) deal with the
following problem: how to help students to avoid such a pitfall when (or just
before) reaching algebra? By contrast, we focus our attention on remedial
activities. In particular, we try to make 'blind calculators' aware of the meaning
of the expressions they manipulate, and the role it plays.
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We came up against a cumbersome problem, which we suppose is rather
familiar to all those who try to teach algebra. Blind calculators are quite
unconcerned by all you might say about the meaning of the expressions they
produce. Once they have wrongly transformed an expression, its value does not
remain the same; if that shocks you, it is your problem, not theirs!

For example, many students make the well-known mk.take:

(a+b)2=a2+b2
The point is that the argument: "if a is 2 and b is 3, (a +b)2 is 25 whereas

a2+b2 is 13" is rarely convincing. Some students reply "so what?" For them,
algebra appears as a question of rules. They do not care whether (a+b)2 may
have the value 25 or 13 or anything else: values of expressions are not relevant
criteria.

For some authors (e. g. Healy, 1993; Vergnaud, 1988), blind calculators do
not bind together expressions and corresponding problem situations. Others
(e. g. Gray, 1993 or Linchevski & Sfard, 1991) think that blind calculators have
difficulties relating expressions and underlying concepts.

However, we think that these various approaches deal with the "so what?"
attitude only in an indirect way. On the one hand, 'fluent algebraists' (Kirshner,
1987) do not need to refer to a problem situation whenever they have to perform
a calculation. On the other hand, in the previous example (a+b)2 , the difficulty
(for blind calculators) is not theconcept of square itself, but rather that the value
of this square has to remain the same when it is developed.

So, these observations have led us to focus our attention on the logical
(neither situational nor conceptual) aspect of the meaning, in terms of the
'value' of expressions. In order to define this, we used the distinction Frege
(1892) established in between Sinn ("Sense") and Bedeutung ("Denotation" or
"Reference") (see also Arzarello, Bazzini & Chiappini, 1992). "Francois
Mitterrand" and "The President of the French Republic" have the same
denotation (Bedeutung): the real man whose name is Francois Mitterrand . On

the other hand, these two phrases do not have the same sense (Sinn): the
second phrase emphasises the official role of the man, while the first stresses
his name. In algebra, Frege explaned that:

"2+3" denotes a number: 5

"2 +3 =7" denotes a Boolean: false
"2x +3" denotes a function f. f( x) = 2 x+ 3

{"2x +3=7" denotes a Boolean function b: b( x).true if x= 2
b( x ) = false otherwise
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A more detailed description of algebraic denotation may be found in
Drouhard (1992a).

We claim that a student has to know that expressions denote, even if he is not

able to express it; i. e. he must know that 2x+3 has a value (his 'instantiation' in

model theory) and that this value depends on the value of x . Moreover, he must

know that formal transformations between formal expressions (as to transform

x+3 into 3+x) do not change their denotation. Without denotation, algebra is
just a question of rules. Denotation is a keystone: it is the exact difference
between raw symbolic computation (as computers do) and actual algebra.

Precisely, 'blind calculators' ignore that expressions are denoting, and a
fortiori ignore that denotation remains when transforming. It is very difficult then
to discuss with them. When the teacher disagrees with a transformation
(because the denotation changes) they believe that he just prefers another rule.

Even a numerical instantiation proposed by the teacher (e. g. a =3 etc.) is not
relevant for them, for they ignore that transformations retain values. For them,
there is a difference, not a contradiction ("You made a transformation and I
made an other transformation: obviously the values are not the same, as we did

not do the same thing!"). Contradiction requires denotation. Blind calculators
ignore denotation, and teachers may ignore that blind calculators ignore it: it is

a total misunderstanding.

WRITE FALSE INTERVIEWS

Background
Many students we interviewed were complaining of always writing wrong

things in algebra. This suggested to us to use the "symptom prescription"
method (Watzlawick, Beavin & Jackson,1967). A man, who suffered from total
insomnia and claimed that no therapist could help him, was ordered not to
sleep the next night ("in order to better observe the phenomenon"). Of course,

the man could not stay awake! So, in algebra, we found that asking the student

to 'always write false' was a good way to break the vicious circle.
6a+3b

We propose an expression as: 2a+b or: (a+b)2.... and ask him to write

something which is always false. In the latter case, most students begin with

something like: (a+b)2= a2+3ab+b2.
In general, it is not aways false (as for blind calculators, "false" is synonymous

of "incorrect"). We ask: "how do you know that it is false?", then "is it always
false?" or "how do you know that?". Afterwards, an actual dialogue on 'false'
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and 'true' in algebra may start, as there is no formal rule available to produce
always false statements. The only solution consists in dealing with the
denotation of expression. So (for example) he may produce a solution
equivalent to a =a +1 .

On the contrary, 'traditional' interviews where a true answer is asked are
ambiguous: it is difficult to know if a good answer is due to a student who is
aware of the truth of the expression, or just to a blind calculator who fortunately

used the correct transformation. Indeed, in algebra correct transformations lead

to true expressions! But, you cannot obtain always false expressions just by
changing correct transformations.

Example

Let us provide an example of a 'write false' interview, which was conducted in

december 1993. The interviewer was one of us (letter "M"; her interventions are

in bold) and the student is a 16-year old girl who was very aware of her low
level in algebra. The interview begins with explanations about what will be
done (setting of a 'contract').
17 M I will give you something which is certainly familiar to you, I say you

"write (a +b )2" [N Writes]. Well, write "=" and write something wrong

18 N Mm [she writes a2+b+b]

19 M Well, now tell us what makes it false for you

20 N Well, that is b+b doesn't make b2, that makes 2b

21 M And how do you know that it makes 2b?

22 N [laughs] Just like that, I don't know, I learned it

23 M You learned it where?

24 N In middle school

One cannot just say that, for 'blind calculators', rules have no reason (cf.
Linchevski & Sfard (1991): "Rules without reason and processes without
objects"). They just have no intrinsic justification. Things are done so because it

is the way they are to be done. Next, N. tries then to show 'with numbers' (I. e.
particular examples) that b2 is not 2b . She chooses b =2 and then b =3,
calculates and eventually says "I believe that this relation (b2 = 2b) is always
false for, er..."

99 M. And what makes you believe that it is true for all numbers

100 N. Ah all numbers, no, because, well, I think that, as it is an even number, maybe,
believed that maybe there were differencie between even and odd numbers

101 M. Yes
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102 N. And, well, as here, it is an even and odd number, for both it is, it is not equal then. In

fact, what one needs is, each time one needs proof by numbers, not by

103 M. one needs proof by numbers, what does it mean?

104 N. Because, well, when one see with letters, one cannot know very well, maybe it's
false, but

105 M. What does it mean, one cannot know very well, what do you see
there, when seeing letters?

106 N. When I see letters, that means nothing to me

107 M. That means nothing to you

108 N. No, I can't prove that Ws equal to

109 M. Ah. When you see letters you can't prove...

110 N. No

111 M. ... that it's equal to

112 N. No. Not at all because, maybe, after, well, when one takes numbers

113 M. So, how do you do, when you are in classroom and you have letters
and you have to prove that it's equal?

114 N. Well, I never thought [ she laughs] to substitute with numbers!

It could be hazardous to trust N. when she assumes that she never thought to

substitute letters with numbers. However, it is clear that, at the moment of the
interview, she is far from the idea of denotation. Then M. asks N. to remember
what did she did, the last time when she has to know whether two expressions
were equal or not. N. gives (!):

(a+b)(a-b)=a2+2ab+b2
and later gives as an example of the latter formula: (3x+2)(4x-8)

197 N. Well then, I developed and I found...

198 M. But I, I see there a+b, a-b, so a, what would it be, for you?

199 N. a? ali, well, uh...

200 M. I don't know, uh...

201 N. Mm a that would be 3x

202 M. Yes

203 N. and that one, would be 4x

204 M. So the a, then its value is not the same

205 N. No

206 M. Its value is not the same number in the two parentheses

207 N. Ah no [pause 3 sec] no.

208 M. One do this, in maths?

209 N. Uh, at the moment?
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210 M. No no. Does it happens, in maths, that one has a here, whith the
value 3x and a there, whith the value 4x ?

211 N. I don't know, however, it's possible

212 M. It's possible

213 N. Yes

A letter may represent two different expressions in the same line: this may be
regarded as an evidence for the lack of denotation. Later N. finds an equation
and its solution, x=2. M. asks if there is a way of validate this solution. N.
proposes to replace xby 2 in the equation, calculates and says "8-8=0, that's it!"
424 M. When you say "that's it"...

425 N. Uh, I see that, well, this relation, it's equal to 0, therefore there, it's equal to 0. In fact,
I've never got the idea of replacing x by...

426 M. You've never got the idea...

427 N. No, never, never!

428 M. So there, you think that x=2, it's alright?

429 N. Yes

430 M. Yes, because if one replace here that give 0

431 N. [laughs]. It's the first time I see that!

Actually, one may suppose that N. was said this many times. However the
point here is her shift of attitude towards the letters.

Conclusion

Write False Interviews are nothing but a universal remedy against algebraic
miscomprehensions, neither the prescription of the symptom makes insomniacs

sleep. However, these interviews are a powerful way to break the
misunderstandings, lead students to be aware of the role of the denotation and
then let them start an actual work on algebra.
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SCHOOL ALGEBRA. SYNTACTIC DIFFICULTIES IN THE
OPERATIVITY WITH NEGATIVE NUMBERS
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ABSTRACT
k? this article, we report results from a clinical study, carried out with 12-14 year old
pupils, in which we analyse 25 protocols of individual interview. The main purpose is
to investigate the role played by the operatWity and the different levels of
conceptualization of negative numbers, in the resolution of algebraic equations as well
as in the interpretation of algebraic expressions. The conflicts which arise with the
elementary operations when numerical domain is extended from natural to whole
numbers are also analysed . The resufts point out in the direction that such a numerical
extension, during the processes of acquisiion of algebraic language by secondary
school children, constitutes a crucial element for achieving algebraic competence in
the methods of resolution of problems and equations.

Introduction

Various studies on the teaching and learning of whole numbers coincide

in recognizing the importance of these numbers in the comprehension of

elementary symbolic algebra (Thompson & Dreyfus, 1988; Vergnaud, 1989;

Freudenthal, 1983; Gallardo & Rojano, 1990). Furthermore the algebraic

character of the historical origin of negative numbers has been pointed out

(Freudenthal, 1973; Glaesser, 1981). This is also true of the close relationship

between the operative and conceptual evolution of the latter and the evolution of

algebraic methods for solving equations and problems (Gallardo, 1993). This

suggests that symbolic algebra might be a significant context for the analysis of

the difficulties manifested by secondary school students when they carry out

mathematical tasks involving whole numbers.

After revising the research literature on whole numbers in the process of

teaching and learning mathematics at secondary school level, we carried out,

within the project The Status of Negative Numbers in the Solution of Equationsl ,

1 Ongoing research project (Department of Maternatica Educative of Centro de
InvestigaciOn y de Estudios Avanzados, IPN, Mexico).
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a historico- epistemological study of negative numbers in the solution of

algebraic equations (Gallardo, 1993). At the same time we undertook parallel

research in the field of algebra teaching (Gallardo & Rojano, 1990, 1993). These

studies showed that the extension of the numerical domain from natural to whole

numbers, during the process of acquisition of algebraic language by secondary

school children, constitutes a crucial element for achieving algebraic

competence in the solution of problems and equations. At the beginning, our

research formulated the following questions: In equations and problems, which

numerical domain do the secondary school students confer on the constitutive

elements of the equation when they try to arrive at a solution? Which numerical

domain do they accept for the solution? What is the relationship between the

numerical domain assigned to the equation and the type of language associated

with it? Which methods or strategies obstruct or lead to the evolution of the notion

of negative numbers?

In order to carry out a clinical study to seek plausible responses to the

former questions, we designed a questionnaire which was answered by 25

students aged 12-14 years. We also analyzed the protocols of individual clinical

interviews which were video-recorded. The issues dealt with within the interview

were: 1) numerical operativity; 2) resolution of linear equations; 3) resolution of

word problems.

The results concerning aspects 1) and 3) have already been reported

(Gal lardo, 1994 and Gallardo & Rojano, 1993). Here we will focus on the results

corresponding to aspect 2).

Some Results of the Clinical Study

It is important to point out that in both the historico-epistemological sphere

and in the didactic sphere we found that negative numbers pass through different

levels of conceptualization before becoming the formal mathematical notion of
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whole number. These levels are as follows: subtrahend; signed number;

relative or directed number; as an isolated number two levels can be

observed, the result of an operation or as the solution to a problem or

equation . Finally there is the formal mathematical concept of negative

number where the latter acquires the same status as positive numbers. (see

Gallardo, 1994, for a full description of these levels). Furthermore, it can be seen

that the consolidation of algebraic language is determined in a fundamental way

by evolution towards more advanced levels of conceptualization of the negative

number.

As antecedents of this part of the analysis, the interpretation attributed by

the students to the notion of symmetric of a number, order of whole numbers and

the use of numerical operativity are examined. Some results of the clinical study

follow.

Symmetric of a number. Mechanisms inhibiting the construction of the

symmetric are found because -(+a), -(-a), a E N are not recognized as

numbers. Some subjects operate these expressions subtracting them from zero:

0-(+a) = -a, 0-(-a) = a. This allows "familiar" numbers to be obtained, a, -a,

(in the interview protocol there are specific numbers in all items). Other students

consider symmetry as 'half and cut the number in two". Thus, the symmetric of -2

will be -1. The subjects who recognize the symmetric of a number are those who

spontaneously resort to the model of the number line and say that "the number

line expresses symmetry". Moreover, they possess a fluid handling of the rule of

signs (-)(+)=-

Order of the whole numbers. Pupils respond incorrectly when they associate

the negative with the poSitive magnitude or use the model of goods and debts to

justify their answers. On the other hand, they respond correctly when they use tha

number line model or its more concrete version, the temperature scale.

Numerical operativity. The majority of pupils frequently resort to the invention
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of rules which lead to both correct and incorrect results. Here are two erroneous

cases:

Rule of too many signs. "This sign [-a(-b)] is to take away, the other [-a +b)] is

not required".

Multiple rule of signs. "Minua-(-b)] with mina-(-b)] plus and plus with
minus [-a+b)] is minus'.

Resolution of equations. In the sphere of algebra, the interview protocol

consisted of algebraic expressions and linear equations.

Algebraic expressions. Open statements of the form x+a-b were
presented to the students. The following situations were found:

1) They closed the expression x+a-b=c; 2) An arbitrary numerical value was

assigned to x; 3) They decode the expression as the equation x=a-b; 4)

Inhibitory mechanism: impossibility of equating x+a-b with "any expression"

since this would be to invade the place of the "result'. At most two

simultaneous expressions are considered: x+a-b; a-b=c; 5) Inhibition of

known operativity: "I can't add or subtract because I haven't got the result, nor

do I know what 'x' is worth"; 6) Conjunction of dissimilar terms: x+a-b=(a-b)x

The students were also presented with expressions of the form a-x-b, and

they proceeded in a form analogous to the above case x+a-b.

Linear Equations. As regards the solution of equations, the findings are

grouped in relation to the nature of the solution and with respect to the nature

of the coefficients.

Nature of the solution.

In the equation x+a=b; a>b, the following was observed:

1) Inhibitory mechanism. 'It can't be done. There is no number which when

added to a, gives b [abbacus type reading]. This language inhibits the

negative solution.

2) Inhibitory mechanism. Faced with a possible negative solution,
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previously known methods of equation resolution .6r6 not brought into play:

trial and error, inversion of operations, transposition of terms.

3) A scheme of quasi-equa!ity is resorted to (carrying out operations

ignoring the sign of equality) in order to obtain a positive solution: x=a-b.

4) The structure of the proposed equation, x+a=b, is altered and it becomes

x.a=b or x-a=b.

In the equation ax+b=cx+d; c>a:

1) The solution -x=o is reached which inhibits any action by the student, or

else leads to the erroneous positive solution x=e. The student does not

decode -x=e as -1x=e.

2) Rule of Arithmetic Result: "You can't do it because you haven't got the

result (the second member of the equation is not a 'known number".

3) The polisemy of the x is presented (different values are assigned to the

two occurrences of x).

In the equation 2x+br.x+b:

1) Inhibitory mechanisms when faced with the null solution. The reduced

equation 1x=0 leads to x=1. Thus, also, 2x=x leads to the solution x=1.

2) When x=0 is obtained, the student continues to seek another value since

the null solution represents "the absence of value".

Nature of the coefficients.

In the equation a-x=b, the following is found:

1) The unknown is taken as positive: 'if x were negative, it should be written

a--x=b".

2) The opposite situation is presented: the equation a-x=b is transformed

into x-a=b, "because -x is a negative number".

In the equation ax-b=c:

1) A partial inversion of the operations is carried out: ax=c+b. Division is

not carried out, an abbacus type reading is used, 'Which number multiplied



by a is equal to c+b?"

2) Defective operation of the unknown: ax-b=c gives x(a-b)=c.

3) Duality of the minus sign. Given the equation ax-b=c, the question arises

is it a subtractiori[Eie-b=c] or is it a negative number?'

4) Place value reading: ax is understood as a number where the figure of

the units is unknown.

Conclusions

1.- The pupils of the study spontaneously resort to the use of teaching models for

negatives (number line, thermometer, goods and debts, etc) in order to justify

their responses. This leads to errors in the interpretation of the symmetric of a

number and the order of whole numbers.

2.- The triple nature of subtraction is found. The students with an advanced level

of conceptualization of the negative number recognize the triple nature of

subtraction (completing, taking away, and the difference between two

numbers) and the triple nature of the minus sign (binary, unary and the

symmetric of a number).

3.- The invention of rules arises in the operativity with negatives, both correct and

incorrect.

4.- The domain of multiplication is found in additive situations.

5.- There are mechanisms of inhibition when .faced with double signs [-(+a),

-(-a)] and expressions which involve both negative numbers and letters.

6.- When faced with a possible negative or null solution, school methods of

equations resolution are not used.

7.- Erroneous interpretations of the negative number are found. and negative or

null solutions are not accepted [difficulty in accepting the negative or the zero

as isolated numbers].

8.- The phenomenon known as blind algorithm of subtraction is 'r ound . It consists
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of the unthinking use of the syntactic rules which prevent the comprehension

of the concepts.

This analysis shows the conflicts which arise with the elementary

operations when the numerical domain is extended from natural to whole

numbers. The majority of pupils tend to charge the syntactic expressions with

meaning, in the same way as they will concentrate only on the syntax of the

numerical relations when they work with concrete models. The dialectical

interaction semantics-syntax is always present, although sometimes in an implicit

form. It is worth mentioning the surprise shown by the subjects when they find

that addition does not always make bigger; subtraction does not always make

smaller; multiplication is not always repeated addition; and, that addition can be

seen as subtraction and vice versa.
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A Constructivist Explanation of the Transition from Arithmetic to Algebra:
Problem Solving in the Context of Linear Inequality

Tracy Goodson-Espy
University of North Alabama

Five case studies of college students solving a set of constructivist learning tasks
provided the basis for the development of an explanation of the transition from arithmetic
to algebra. This paper focuses on comparing the cognitive activities of the solvers of two
of the case studies. One of these solvers completed a transition from arithmetic to
algebra while the other was unable to do so. The case studies reveal that a successful
transition requires that a student: (a) have a robust understanding of the concepts of
variable and equality and, (b) must attain higher levels of reflective abstraction if they are
to be able to reify their arithmetic processes into abstract objects that can be the focus of
algebraic symbolism.

THEORETICAL FRAMEWORK

Filloy and Rojano (1984) defined the didactical cut to express how students'

arithmetic experiences can interfere with their transition to algebra. In the theory of

reification, Sfard (1991) and Sfard and Linchevski (1994) suggested an explanation for

the problems students encounter as they attempt to develop mathematical concepts.

They defined interiorization, condensation, and reification as stages in students' concept

development. Interiorization was described as the stage where the learner performs

operations on lower-level mathematical objects. During this stage, the learner is

focused on the processes that he or she is involved with. As the learner becomes more

familiar with performing these processes, he or she arrives at a point where he or she

can think about what would happen without actually carrying out the process. The

process is said to have been interiorized when the learner no longer has to perform the

operation in order to think about the process. Condensation was described as the stage

where a complicated process is condensed into a form that becomes easier to use and

think about. Sfard (1991) explained the stage of condensation as being where a new

concept is actually "born" (p. 19). It is not until the phase of reification that a student

becomes able to conceive of a mathematical process as an object and becomes able to

use this abstract object as an input for higher order processes. If at any point this

developmental cycle is interrupted, the student may resort to activity that is no longer
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meaningful. Such activity is referred to as being pseudostructural (Sfard and Linchevski,

1994).

In a study that examined the role of reflective abstraction as a learning process,

Cifarelli (1988) described several levels of reflective abstraction that may be used to

specify the details of the theory of reification. These levels of reflective abstraction

include: (a) recognition, (b) re-presentation, (c) structural abstraction and, (d) structural

awareness. In relation to the present study, the level of recognition can be thought of as

the ability to recognize that one can solve the current problem by doing again what one

has done before. Solvers operating at this level would not be able to anticipate sources

of difficulty. Solvers who are able to mentally run-through a solution and who can

anticipate sources of difficulty when using previously developed methods are referred to

as operating at the level of re-presentation. The next level, structural abstraction, is said

to occur when a solver becomes able to mentally run-through a procedure and can

reflect on potential, as well as prior activity. The highest level of reflective abstraction is

structural awareness. At this level, the problem structure created by the solver has

become an object of reflection. The solver would not have to conduct mental run -

throughs of solution methods in order to make judgements concerning the solution of the

problem.

Sfard and Linchevski's (1994) theory and Cifarelli's (1988) levels are closely

related in several respects. First, these researchers agree with the Piagetian

assumption that knowledge is rooted in the activity of the learner. Next, they

acknowledge the role that mental imagery plays in the development of conceptual

knowledge. Finally, Cifarelli's (1988) levels of recognition and re-presentation precisely

describe the cognitive activities that are required to progress through the stage of

interiorization. The level of reflective abstraction referred to as structural abstraction

provides the bridge from the stage of condensation to the stage of reification. Structural

awareness is the level of reflective abstraction that allows the solver to attain reification.

In the present study, the levels of reflective abstraction defined by Cifarelli (1988)

provided a means of illustrating the theory of reification in action as solvers attempt to
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make their transition from arithmetic to algebra. This theoretical framework provides a

basis for analyzing the activity of solvers who make a transition to algebra as well as

those who are unable to do so.

THE STUDY
Procedure

Five interviews were selected for the development of case studies than examined

the transition from arithmetic to algebra and the solver's understanding of the concept of

linear inequality. During an individual interview, the student solved a set of nine learning

tasks, that for the expert, involved the concept of linear inequality. The students were

allowed an unlimited amount of time to solve the problems and were not told that the

problems involved linear inequality (See Table 1). The interview typically lasted two

hours. The data included the videotapes, transcripts of the tapes, and the written work

of the students. The analysis of the case studies fell into three categories:

(a) students who used purely arithmetical methods that were not based on situation-

specific imagery, (b) students who utilized charting methods that were based on

situation-specific imagery and, (c) students who used formal algebraic methods.

Table 1
Some Examples of the Learning Tasks and a Characterization from an Expert's
Perspective

Task 1: Horatio has decided that instead of purchasing a car, he wants to lease one. He
is considering two cars. Horatio can lease a Mazda for two years for $300 per month
with no additional charge for mileage. He can lease a Toyota for the same period of
time for $200 per month, but there is a mileage charge of 20 cents per mile. How many
miles would Horatio have to drive during the two years in order for the Mazda to be the
best choice?

Task 1 & 2: a < bx + c Note: Task 2 presents a similar situation

Task 3: You can rent a 15 foot moving truck from I-Haul rental for $100 per day plus 10
cents per mile or you can rent a comparable truck from Spyder rental for $75 per day
plus 20 cents per mile. How many miles would you have to drive the truck for it to be
cheaper to rent from I-Haul?

Task 3 & 4: ax + b < cx + d Note: Task 4 presents a similar situation

Task 5: Similar problem with extraneous information
Task 6: Similar problem with insufficient information
Task 7: Problem describes a contradiction
Task 8: Student asked to write symbolic statements for the previous problems
Task 9: Student asked to write a problem similar to one of the tasks
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The precedent for using a set of learning tasks such as the ones described in

Table 1 to observe and analyze cognitive activity rests with the work of Yackel (1984)

and the work of Cifarelli (1988). According to Cifarelli, working through carefully crafted

learning tasks provides the solver with opportunities to reflect and reorganize his current

conceptual understanding and to develop more powerful representations. The following

section compares the cognitive activity of Solver #6, who used a charting method but

was unable to make a transition from arithmetic to algebra, to the activity of Solver #12

who was able to make such a transition.

Results and Discussion

Solver #6 could not complete a transition to algebra because she was working with

a statement such as (X .20) + 75 as a process only. She was unable to conceive of it

as a quantity that could be compared to another quantity. This incapacity to cope with

the process/object duality as described by Sfard (1991) was a result of Solver #6 being

unable to attain levels of reflective abstraction higher than re-presentation. In terms of

Sfard's (1991) constructs, the solver remained at the level of interiorization. The level of

structural abstraction was required to enter the phase of condensation and the solver

was unable to reach this level. The solver needed to pass through the phases of

condensation and reification in order to develop the ability to consider processes as

objects. Furthermore, because the solver remained at the stage of interiorization, she

held process-oriented conceptions of variable and equality.

Solver #6 found answers to all of the tasks by using arithmetical methods and

charts that were grounded in situation-specific imagery. She provided algebraic

representations, with difficulty, when she was asked to do so on Task 8. She wrote, X

[(300 24) - (200 24)] ÷ .20, as her symbolic representation for her work concerning

the first task, referring to it as, "my algebraic!". In her representation for the second task

which follows, she altered her use of the letter X, allowing it to represent the number of

miles to be traveled.
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S: X = Now I can't write an algebraic equation for this one. . . maybe. . . (X .22).
Well, maybe I can. (X .22) . . . No, I can't, wait, no. . . (X .22) + 189 =, O.K.
there's my algebraic equation. Equals? Um, I don't know, I can't do that one.

While the solver used charts to solve some of the problems, because she was operating

at lower levels of reflective abstraction, she was unable to think of the processes used to

create the charts as abstract objects. The following episodes illustrate this:

Task 3
S: I'm comparing the two [costs for renting the vehicles] and I don't see how I

could write an algebraic equation to compare them. Cause I mean, I'm sure I
could write down the algebraic equation easily like, (X .20) + 75 and then (X
.10) +100, but then I would have to compare them.

I: Well, what was the comparison? What was the question asking? What are you
doing at each stage of the chart?

S: I have to compare and I don't know.

Task 4
S: (X .10) + 28 and (X .16) + 14, I can write it, I just can't use it!

These examples illustrate that for Solver #6, a phrase such as (X .10) + 28, exists only

as an arithmetic process. She was unable to think of it as the total cost of renting a truck

and, lacking the ability to view this phrase as an abstract object, she literally had no

thing that she could compare to something else. While she referred to (X .20) + 75 and

(X .10) + 100 as an equation, she never wrote an equals symbol between them and

her comments reveal that she did not consider doing so.

Solver #12 was able to complete a transition to algebra because he was able to

attain the levels of structural abstraction and structural awareness as he solved the

problems. The solver was able to solve the first two tasks by using an arithmetical

method that was based on situation-specific imagery. On Task 3, the solver encoun-

tered mileages charges for both vehicles (See Table 1). This additional information

caused the solver to create a chart to organize his arithmetic activity. The solver was

able to realize higher levels of reflective abstraction by mathematizing his earlier activity.

Achieving the level of structural abstraction allowed the solver to think of his arithmetical

statements in terms of what they meant to him in the context of the situation-specific

imagery he had used to solve the problems. This activity permitted his conceptions to

undergo the condensation phase. Attaining the level of structural awareness allowed
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the solver to complete this phase and to think of these arithmetic processes as abstract

objects that could be manipulated. This activity illustrated reification in action.

On Task 8, the solver was able to develop algebraic representations for the tasks

by mathematizing what he had done to create the charts. Through his activity, he

became able to think of an arithmetic process, such as 100 + (X .30), as an abstract

object, such as the total cost of renting a truck, that could be symbolically compared to

another abstract object. Developing this capability allowed the solver to write equations

and inequalities to symbolize the comparisons he had made while using his charts.

During his work on Task 8, the solver developed algebraic representations for

problems that he had solved earlier by using arithmetic or charting methods. For the

first task, the solver wrote, 300 = 200 + (.20)X. He wrote, 255 = 189 + (.22)X to

represent the second task. Solver #12 carefully analyzed what he had done in the chart

to solve Task 3 before he wrote his algebraic representation.

5: Urn, I think you could do it like, urn, put the 100 per day, add that to your 10
cents on the mile, times X, and X is your number of miles, and that's going to
have to equal your 75 per day plus 20 cents also times X.
[Writes] 100 + (.10)X = 75 + (.20)X X = miles

While the solver wrote, X = miles, his verbalizations indicate that he is thinking of it as

representing the number of miles. This demonstrates that a more robust understanding

of the concept of variable is developing out of the solver's activity. After working the

problem to check his solution, he decided that he wanted to change the equation to an

inequality. In the two case studies where a transition to algebra occurred, the solvers

first represented their work with an equality and only later translated it into an inequality.

This results supports Sfard and Linchevski's (1994) observation that equality precedes

inequality in conceptual development. Solver #12 changed the representation to 100 +

.10X > 75 + .20X. The reader will observe that the inequality symbol is reversed. In the

transcript of the solver's charting, it was apparent that the solver was using the notion of

finding a critical point and adding one. Thus, during his algebraic representation he

bases the direction of the inequality on his prior activity. While this error is interesting, it

does not detract from the solver's ability to make a transition to algebra.
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CONCLUDING REMARKS

The results of all five case studies revealed that if a solver was to make a success-

ful transition to algebra they needed to attain post-re-presentational levels of reflective

abstraction. The first three solvers, who operated at the levels of recognition and re-

presentation, typically held weak conceptions of variable and equality. A letter simply

served to name a value they were looking for or it served to name an arithmetical pro-

cess that they were describing. Solvers operating at these levels did not use equality

sentences at all or used the equals symbol in an arithmetic sense to announce the an-

swer to a computation. These solvers were unable to conceive of arithmetic processes

as objects and thus their transition to algebraic methods was blocked. The solver of the

third case study, Solver #6, made some progress through the use of charting and be-

came able to use a letter to represent a varying quantity, such as the number of miles

traveled. She was able to describe the arithmetic process that she had used to create

her charts by using algebraic symbolism, such as (X . .16) + 14, but this phrase still rep-

resented a process to her. The solvers of the last two case studies were able to attain

the levels of structural abstraction or structural awareness. These solvers held or were

able to develop robust conceptions of variable and equality. Significantly, the attainment

of the level of structural awareness allowed the solver to view mathematical statements

such as (X .10) + 25 as both a process and an object. Being able to cope with the pro-

cess/object duality (Sfard, 1994) made a transition to algebra possible for these solvers.
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Middle/High School
Algebra

Representations

Multi-Tasking Algebra Representation

Leah P. McCoy

Wake Forest University

This study examined the skills of students in translating among four
different representations of algebraic situations: words, tables,

graphs, and equations. Results revealed a general weakness in
translations involving words and equations. Also, experts
demonstrated a greater facility in more complex translations.

INTRODUCTION

The new methodology of teaching and learning mathematics is based on

understanding. In the past, many students "learned" mathematics by memorizing

definitions and/or procedures. In lessons recommended by the Standards, students

learn by actively participating in mathematical activities. They IQ mathematics in

many different contexts and representations. They communicate mathematics by

reading, writing, listening, and speaking mathematics. This includes representations

that are described in words, as well as concrete, iconic and symbolic models.

This constructivist view of cognition, which is based on Piaget's theory of

assimilation and accommodation, is the basis for constructivist teaching methods.

Students must experience the concepts in order to internalize them and achieve

understanding (Davis, Maher & Noddings, 1990). When the internal representation

approximates the external representation and appropriate connections are made to

other related material, then understanding has occurred (Hiebert & Carpenter, 1992).

Students are better able to "make sense" of a concept as they discuss the
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mathematics with peers and/or teachers (Corwin & Storeygard, 1992; Lodholz,

1990). The activity of having to form one's understanding into words forces

metacognitive activity and, thus, improves thinking. Research studies have reported

an increase in mathematical learning as a result of requiring students to share their

thinking (Russell & Corwin, 1991). The recommended model is that students

experience the mathematics and then seek understanding by discussion, including

conjecturing, arguing, and justifying (Peterson & Knapp, 1993).

In traditional algebra courses, students learn to manipulate symbols by

simplifying algebraic expressions and solving equations. This type of exercise has

little or no connection to real world applications. Recent research and curriculum

reform in mathematics education encourage us to make algebra more accessible to all

students by making it more application-based. Contemporary algebra instruction

includes integration of algebraic concepts in real-world contexts using tabular,

graphical, symbolic, and verbal representations (Glatzer & Lappan, 1990). This

multi-tasking approach means that students should be able to translate freely among

multiple representations: words, table, equation, graph. For example, if a student is

given an equation such as 3X = 18, he or she should be able to describe a problem

situation for which the equation would be used. Similarly, given a graph, the student

should be able to write "the story of the graph", translating to words. In traditional

courses, we ask students to translate FROM words, but the new emphasis is to have

students demonstrate understanding by translating TO words from other

representations. Wagner and Kieran (1989) identify problem representation in an

algebraic system as a key feature in algebra learning.

METHODS

Subjects were eighteen college students (all of whom had completed at least

one course in college calculus), and thirteen high school freshmen who had just
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completed the first semester of Algebra I.

Each participant was given the Algebra Representation Assessment, a

twelve item open-ended pencil-and-paper test requiring the translation among the four

modes. Each item was scored independently. No reliability data was computed, as

this measure was essentially twelve separate tasks. Validity of tasks to measure the

specified translations was verified by two math educators.

RESULTS AND CONCLUSIONS

Chi-square Tests of Goodness of Fit results revealed that overall five items

of the twelve had a significant number of correct responses. Further, the translation

task scores of the expert and novice groups were compared. The experts (college

students) scored significantly higher on nine of the twelve translation tasks.

Table 1.
Correct Responses to Algebra Translation Tasks.

Total Correct Chi-Square

W-->T 29 (94%) 23.516 *

W-->G 18 (58%) 0.806

W-->E 14 (45%) 0.290

T-->W 25 (81%) 11.645 *

T-->G 30 (97%) 27.129 *

T-->E 15 (48%) 0.032

G-->W 27 (87%) 17.065 *

G-->T 27 (87%) 17.065 *

G-->E 9 (29%) 5.452

E-->W 10 (32%) 3.903

E-->T 21 (68%) 3.903

E-->G 20 (65%) 2.613

W= words, T= table, G= graph, E= equation

*Chi-Square (1, N = 31), p < .01

Number correct was significantly greater than 50%
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In examining the total group, there were six translation tasks involving

words. A significant number of participants could translate only three of these:

words to table, table to words, and graph to words. This indicates a deficiency in

ability to relate graphs and equations to real world situations in words. The results

of this study indicate that there may be a weakness in students' ability to connect the

algebraic representation to the real world.

There were mixed results in translations involving tables and graphs. These

representations may be considered intermediate stages in the translation of concrete,

real life representations and abstract algebraic symbols.

Table 2.
Expert/Novice Differences in Responses to Algebra Translation Tasks.

Task College Students High School Students Chi-Square

W-->T 17 (94%) 12 (92%) 0.057

W-->G 16 (89%) 2 (15%) 16.749 *

W-->E 14 (78%) 0 (0%) 18.438 *

T-->W 18 (100%) 7 (54%) 10.302 *

T-->G 17 (94%) 13 (100%) 0.746

T-->E 15 (83%) 0 (0%) 20.990 *

G-->W 17 (94%) 10 (77%) 2.062

G-->T 18 (100%) 9 (69%) 6.359 *

G-->E 9 (50%) 0 (0%) 9.159 *

E-->W 9 (50%) 1 (7%) 6.183 *

E-->T 17 (94%) 4 (31%) 14.006 *

E-->G 16 (89%) 4 (31%) 11.138 *

W= words, T=table, G=graph, E=equation,

*Chi-Square (1, N = 31), p < .01,

Number of correct answers and group were related.

17E1 93



The students could translate tables to words and graphs and also could

translate graphs to words and tables, but they were not able to translate either tables

or graphs to equations. Similarly, they were not able to translate equations to any of

the other representations. This is further indication of students' inability to connect

the abstract algebra symbols to real world situations.

In comparing the experts and novices, the three tasks that were uniformly

high were the simple translations of adjacent levels: words to tables, tables to graphs,

and graphs to words. The experts were significantly better at all six tasks involving

equations and on three other translations that were somewhat less logical: words to

graphs (requires intermediate step of table or equation), tables to words (requires

backward thinking), and graphs to tables (again, requires backward thinking). In

short, the expert group demonstrated skills indicative of a deeper understanding of the

underlying concepts represented.

IMPLICATIONS

In conventional algebra classes, the curriculum consists of pencil-and-paper

manipulations with algebraic expressions, equations, and graphs and little application

to real world situations. In the Standards ' recommendations, connection to the real

world is a key part of the algebra curriculum. Given the weaknesses identified in

this study, teachers are encouraged to provide experiences for students that connect

the algebraic representation in equation form to the real world in words. These

connections should be communicated in various forms. Algebra students should

actively experience mathematical concepts and be able to listen, speak, read and write

the mathematics.

The mixed results involving tables and graphs are consistent with the stages

of representation suggested by Bruner (1977). The iconic, or intermediate, stage is a

table and/or a graph, and this is a transition between the concrete real-world situation
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and the abstract algebraic representation. In the constructivist classroom, students

actively participate in experiences that assist them in constructing their own concepts

of these representations and the transitions between them. The emphasis in algebra

classes should be on understanding and communicating these translations.
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QUANTITATIVE MENTAL MODELS OF LINEAR FUNCTIONS

Joyce L. Moore

Vanderbilt University

A core unresolved issue in situated and constructivist theories of learning is the

nature of the relationship between physical and symbolic understanding. To

explore this issue, I compared how students coordinated their physical and

symbolic activities in the contexts of several learning environments. A physical

device, a computer simulation of the physical device, and a computer-based

numerical representation were used to examine reasoning and learning about

linear functions. The physical device is a pair of winches that consists of blocks

that are pulled by strings winding around spools as a handle is turned. The

position reached by a block after some number of turns can be represented by y

in the formula y = b + mx, where b is the starting position, m is the size of the

spool, and x is the number of turns. The computer simulation involves a

simulation of the winches that is linked to a table of numerical values and a pair

of equations. The computer-based numerical device is analogous to the winch

device but operates like a pair of "function machines." My expectation was that

the physical device and computer simulation would ground understanding of

symbolic representations of function in students' implicit understanding of the

functional relations among physical quantities. Therefore, I predicted that

students using the physical device and computer simulation would be more

likely than the number machine students to integrate their quantitative and

symbolic reasoning, and that their resulting understanding would generalize to

other situations. Twelve pairs of seventh graders were videotaped using one of

the devices while learning about variables, linear functions, and equations.

Analyses of the videotapes confirm my predictions that the physical device and

computer simulation are environments in which students understand the

quantitative structure of the devices, and that students' quantitative models can

provide a foundation for the use and manipulation of equations.
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Climbing the Incline of the Slope Concept

Vicki Schell

Lenoir-Rhyne College

Theoretical Rationale

The concept of slope is fundamental to understanding the study of calculus. Students

are introduced to the idea of slope in their algebra classes in a restricted domain, that of linear

functions, and from this limited exposure often develop misconceptions which later impact their

construction of calculus concepts. This study investigated students conceptualizations of slope,

and also investigated the components of the slope in terms of van Hie le level characterizations.

Method

Students ranging from those studying Algebra I through graduate students and

mathematics instructors at junior colleges were asked to draw concept maps of their idea of slope.

The differences and similarities in the concept maps were examined to find "common cognitive

paths", as well as the identification of misconceptions which would impair understanding.

Additionally, levels of behavior have been formulated according to the van Hie le characterizations.

Results

The van Hie le Levels of Student Behaviors for slope are described. At the

previsualization level of slope, the student can: use words such as "rise over run" (without

meaning); show the slope between two points graphically; calculate the slope between two given

points. At the visualization level, students can: recognize that "slope" refers to the steepness;

see similarity between horizontal and vertical lines (no slant); identity the slope in the equation

y=mx+b (but not graph the line); relate "rise over run" to Ay/Ax. Students at the analysis, level can:

recognize positive and negative slopes from graphs; connect graphical and algebraic ideas of

slope; recognize that the slope of a vertical line is undefined. Students at the abstraction level

can: recognize that the graphical representation of slope can be misleading (because of scale );

relate slope to rate of change; connect procedures of finding maxima and minima to the concept

of a slope of zero. Students at the deduction level can relate the concept of slope to vectors.
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THE DISTRIBUTIVE LAW IN ARITHMETIC AND ALGEBRA AND THE COGNITIVE
DROCESSES OF COLLEGE LEVEL REMEDIAL STUDENTS

BRONISLAW CZARNOCHA, MATHEMATICS DEPT.
HOSTOS CC,CDNY, NEW YORK CITY

RESEARCH GOAL: TO DETERMINE THE NATURE OF COGNITIVE SKILLS NECESSARY

FOR THE MASTERY OF THE DISTRIBUTIVE LAW (DL) IN ARITHMETIC AND ALGEBRA.

THE HYPOTHESIS WAS DERIVED FROM THE COMPARISON OF MENTAL OPERATIONS

INVOLVED IN APPLYING DL WITH THE SKILLS DISPLAYED DURING SUCCESSFUL

PERFORMANCE ON THE 2-DIM PIAGETIAN CLASSIFICATION TASK (BLUE, YELLOW,

AND RED CIRCLES, TRIANGLES AND SQUARES WITH THE INSTRUCTION: PUT TOGETHER

THOSE WHICH ARE ALIKE). THE HYPOTHESIS WAS TESTED BY COMPARING THE PER-

FORMANCE OF 29 REMEDIAL STUDENTS AT HOSTOS CC ON DISTRIBUTIVE TASKS WITH

THEIR PERFORMANCE ON THE CLASSIFICATION TASK .HYPOTHESIS: THE NECESSARY

COGNITIVE SKILL NEEDED FOR THE SUCCESSFUL PERFORMANCE ON DISTRIBUTIVE

TASKS IS THE ABILITY TO RECOGNIZE AND LO HOLD-ON-TO A PARTICULAR SIMI-

LARITY CRITERION IN Tu. 2 DIMENSIONAL CONTEXT OF THE CLASSIFICATION TASK.

DISTRIBUTIVE TASK #1 (ARITHMETIC): A SUBJECT WAS GIVEN TWO RECTANGLES

WITH CONGRUENT WIDTHS OF 5 UNITS AND DIFFERENT LENGTHS OF 5 & 7 UNITS

AND ASKED TO COMPUTE THE TOTAL AREA. THE RECOGNITION OF TWO WAYS TO

FIND THE AREA:5*5+9*7 & 5*12 WAS COUNTED AS THE SUCCESSFUL ANSWER.

DISTRIBUTIVE TASK #2 (ARITHMETIC): A SUBJECT WAS GIVEN A COLLECTION OF

15 CUBES WITH NUMBERS 2,3 OR 4 PRINTED ON THEM (FIVE CUBES OF EACH

DIGIT) AND ASKED TO FIND THE SUM OF ALL DIGITS. THE RECOGNITION OF TWO

COMPUTATION TECHNIQUES: 5*2+5*3+5*4 AND 5*(2+3+4) WAS COUNTED A SUCCESS.

DISTRIBUTIVE TASK #3 (ALGEBRA): THE SUBJECTS WERE GIVEN A PEN AND PAPER

TASK CONSISTING OF 3 CSMS PROBLEMS TESTING THEIR KNOWLEDGE OF DL.

RESULTS:THE HYPOTHESIS WAS FULLY CONFIRMED IN THE ARITHMETIC CASE; ALL

SEVEN SUBJECTS WHO WERE SUCCESSFUL ON TASKS 1 & 2 DISPLAYED THE

HYPOTHESIZED COGNITIVE SKILL. THE RESULT IN THE ALGEBRAIC CASE WAS

WEAKER:ONLY TWO STUDENTS DISPLAYED THE HYPOTHESIZED COGNITIVE SKILL

AMONGST THE THREE WHO WERE FULLY SUCCESSFUL ON TASK #3 .
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FOURTH GRADERS INVENT WAYS OF COMPUTING AVERAGES

Constance Kamii

The University of Alabama at Birmingham

Fourth gxaders who were not taught the conventional algorithm for getting

the average were encouraged to invent their own procedures. Below are

some of the methods they invented.

The Average of 40 and 100 (two scores)

1.

2.

3.

Half of 40 + half of 100 =

100 - 40 = 60, 60 f 2 = 30,

40 + 10 = 50, 100 - 10 =

60 + 10 = 70, 30 - 10 = 70

20 + 50 = 70

and 40 + 30 =

50 + 10 = 60,

(the average)

70

90 10 = 80;

The Average of 2, 9, 3, and 6 (four scores)

The midpoint between 2 and 6 is 4, and the midpoint between 9 and 3 is 6.
2

Since the midpoint between 4 and 6 is 5, the average is 5.
4 ( 93) 6

The Average of 150, 125, and 200 (three scores) 6

1. Starting with the median (150), equalizing the three scores, and then

distributing the 25 left-over points. 150 + 0 = 150 (then add 8)
125 + 25 = 150 (then add 8)
200 - 50 = 150 (then add 8)

25 left over
158 with 1 left over

2. Starting with the lowest score (125) and distributing all the points

above it. 150 125 = 25, 200 125 = 75, and 25 + 75 = 100. Since

100 t 3 = 33 r.1, the average is 125 + (158) with a remainder of 1.

3. Guess-and-checking by starting with an estimate of 160, equalizing

the three scores, and realizing 150 + 10 = 160 (then take 2 away)
125 + 35 = 160 (then take 2 away)

a shortage of 5. The child then 200 - 40 = 160 (then take 2 away)
5 short

took 2 from each score of 160, got the average of 158, and had 1 more

than the 5 he needed. 158 with 1 left over



SEE AND SAY: AN ANALYSIS OF VERBAL AND VISUAL
REPRESENTATION IN FIRST YEAR ALGEBRA STUDENTS

MARY KATHERINE NEWBERG
TEXAS A & M UNIVERSITY

Purpose: The purpose of this study was to determine if algebra students

connect external meanings, both visual and verbal, to algebraic expression and

to investigate the relationship of gender and success in algebra to the ability to

represent expressions verbally and visually.

Procedures: Subjects were all students enrolled in first year algebra in a mid-

sized suburban high school. The subjects were identified only by age and

gender. Each subject was provided a set of ten algebraic expressions. For the

first five expressions, subjects were asked to draw a picture, graph, or diagram

that represented each expression. For the second five expressions, subjects

were asked to describe a real world situation for each expression.

Analysis: The responses were scored for appropriateness by two algebra

teachers. Each subject was given a score for verbal and visual representation.

The visual and verbal components were compared using a t-test. Analysis of

Variance was also performed to determine the effects of gender and success in

the demonstration of verbal or visual representation.

Findings: An analysis of the data suggests that students tend to correctly

represent algebraic expressions in a verbal modality more often than in a visual

modality. There are some differences according to gender. Success in algebra

as determined by grade received does not seem to be tied to ability to represent

algebraic expressions in either mode.

References:
Kirshner, D. (1989). The visual syntax of algebra. jornal for Research In

mathematraLticatita 20. (274-287).
Resnick, L. B. (1986). Cognition and instruction: recent theories of human

competence and how they are acquired. Reprinted from B L. Hammonds
(Ed.) 0 06 1 1110 II.: ^111 (pp.144-
158).Washington, D.C. American Psychological Association.
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MISCONCEPTIONS OF VARIABLE

Ricardo Quintero CIN'VESTAV1
Centro de Investigacien y Estudios Avanzados del Institute Politecnico Nacional,

Nicolas San Juan 1421,Col. del Valle 03100, Mexico D.F.
Tel. (525)6041704, Fax.(525)688 -6111

Araceli Reyes- ITAM2
Institute Tecno logic° Autenomo de Mexico

Rio Hondo 1, Tizapin San Angel 01000, Mexico, D. F.
Tel. (525)628-4082, Fax.(525)550 -7637.

miles Trizueros-i'M
Sonia Ursini-CINVESTAV

This Poster presentation shows initial results of a research project in course of development

in Mexico, by staff members of the the Department of Mathematical Education

CINVESTAV and the Department of Mathematics of ITAM.

The project is concerned with the difficulties beginning College students have, in using an

interpreting different realizations of variable,namely variable as specific unkwon, variable as

general number and variable in a functional relationship.

The poster will display results of a diagnostic questionnaire applied to beginning College

students, and sample items whose corresponding answers show striking similarities with the

misconceptions of pre-algebraic students and algebra beginners when dealing with variable.

A further step in the research project, will investigate how difficulties to deal with different

realizations of variable are affected by instruction.

1CINVESTAV- Centro de Investigacion y Estudios Avanzados del Institute Politecnico
Nacional, Nicolas San Juan 1421,Col. del Valle 03100, Mexico D.P. Tel. (525)6041704,
Fax.(525)688-6111
2ITAM- Institute Tecnologico Aut6nomo de Mexico.Rio Hondo 1, Tizapin San Angel
01000, Mexico, D. F. Tel. (525)628-4082, Fax.(525)550-7637.
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A.C.T. IN ALGEBRA
Lzaasamidt. Illamas_R. Swanson

University of Northern Colorado

In fulfillment of the University of Northern Colorado's dedication to curriculum

enhancement, we have pEzr ticipated in the development of the ACT in Algebra

project. This innovative approach to teaching college algebra was generated by

Dr. Robert Mayes to focus the course upon Applications, Concept, and

Technology.

Applications The view of mathematics as a stagnant body of facts prevails

among college freshmen. The ACT in Algebra project attempts to diminish this

view by motivating the mathematics with real world applications. Each topic is

introduced in a "need to know" manner, motivated by interesting applications that

are as true to life as possible. In addition to driving the curriculum, applications

are also studied from a data analysis perspective. Students are taught the

techniques finite differences and linearization to derive modeling functions for real

world data.

f;ioneapi ACT in Algebra emphasizes the formation of mathematical concepts

over manipulation skills. The text is specifically designed to aid in this endeavor

by engaging students through the use of embedded exercises. Students are

expected to pre-read the text and discuss it with their teammate before whole

class discussion, Many topics of study also feature in-class team explorations to

further build concepts. Although traditional exercises are assigned, greater

emphasis is placed upon the completion of non-trivial, conceptually-based team

projects.

Igetbaelogy Computer laboratory explorations utilizing the DERIVE computer

algebra system occur weekly and allow the analytic, graphic, and tabular

investigation of both applications and theoretical mathematics. Students work with

teammates during computer labs and submit joint lab reports, several of which are

written, requiring students to organize their findings and draw conclusions.
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STUDENTS INTERPRETATION OF VARIATION PROBLEMS IN GRAPIIICAL

SETTING

MARIA TRIGUEROS

ITAM

It has been shown that students have difficulties to deal with the concept of function, particularly

when it is presented in a graphical context. This problem becomes more apparent when they face situations

that involve variation. A study was designed to explore how students deal with variation problems in a

graphical setting in order to analyzp their interpretations and to relate their difficulties with their

conceptions. We worked during three semesters with a group of mathematics major students taking a

course in differential equations. The sizes of the groups were 34, 36 and 31 students. Cooperative learning

was employed. We analyzed group's reports, homework's, evaluations and the results of a small interview

with each of the students all dealing with first order differential equations and first order autonomous

systems of differential equations. It was found that before instruction started students had difficulties

relating tangent fields with local variation: There was a generalized tendency to consider different curves

in the same graph as representing solutions of different equations. We related this behaviour with a lack of

understanding of the Fundamental Theorem of Calculus. They know it from previous courses but when

faced with new situation they fail to use it. The analysis of local variation and its relationship with tangent

fields proved to be a difficult task even for students that had experience with graphical manipulation from

previous courses. It seems that the abilities developed while working with functions cannot be easily

transferred when one level of abstraction is added. These problems seem to be related with the students

having a process conception of function and derivative. In dealing with systems of equations students had

difficulties with the interpretation of parametric representation and the meaning of the phase space.

Difficulties persisted even after instruction. Students that don't have a strong concept of function and of

derivative as an object cannot overcome the difficulties. In the presentation the equations used and some

examples of student responses will be shown, to benefit from comments of the participants.
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ASSESSING STUDENT RESPONSES TO PERFORMANCE

ASSESSMENT TASKS

Susan Hillman

University of Delaware

The purpose of the study was to describe what happens when open-ended, real-world problems

in the form of performance assessment tasks are used as a part of mathematics instruction in

middle school mathematics. This paper focuses on the teacher's interpretation of students'

responses to two tasks. The relationship between the teacher's Interpretations of student

responses to real-world problems and her expectations about what students might or should do

with respect to using such problems as a part of instruction will be discussed.

Introduction

The reform efforts in mathematics education have called for the use of performance

assessment tasks as a new source of information to assist teachers in making informed decisions

about students' mathematical knowledge and understanding. As teachers begin to use

performance assessment tasks based on open-ended, real-world problem situations in their

classrooms, there is a need to understand how teachers use these tasks as a source of

information about students. This paper will focus on describing a teacher's interpretations of

student responses to such problems and three factors that seemed to influence the teacher's

construction of knowledge about students.

As students construct mathematical knowledge, teachers collect information and

construct knowledge about students. Multiple sources and methods for collectirg information

about students' mathematical knowledge provide a clearer picture of what students can do and

understand than a single source or method (NCTM, 1993). Even though teachers maycollect

information about students from many sources, they cannot possibly notice everything that

happens in their classroom.

Teachers' schemata, knowledge and beliefs about mathematics, and the teaching and

learning of mathematics, seem to influence instructional and assessment practices (Anderson-

Levitt, 1984; Fennema and Franke, 1992; Thompson, 1992). Specifically, teachers' views about

using performance assessment tasks in the form of open-ended, real-world problems may

influence expectations and interpretations of student responses. Anderson-Levitt (1984)
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proposes a model of teacher thinking that suggests teachers' teaching schemata (ideas about

teaching, learning and assessing), social schemata (ideas about appropriate communication), and

related individualized theories of students influence the information teachers gather and interpret

about students. This model will serve as a framework to discuss how a teachers ideas about using

performance assessment tasks based on open-ended, real-world problems interact with the

interpretations of student responses.

Method

Participants. A seventh grade mathematics teacher, Ms. Turner (not her real name), was

selected because of her interest in using open-ended, real-world problems as a part of

instruction, and her involvement in the Teacher Enhancement Partnership1 project. One of the

goals of the project is to support teachers' implementation of real-world problem situations. The

school is located in an urban-rural school district with about 40% of the student population

including African Americans, Hispanics, Asians, and other minorities. The class reflected the

diverse population of the school and included 28 seventh grade students from the pool of

general mathematics students not selected for pre-algebra, as well as several mainstreamed

special education students.

aejiQmunc&Aueaamentiaaks. The teacher chose the problems from several activities

available for field testing from the PACKETS Program: Performance Assessment for Middle

School Mathematics 2 developed by Educational Testing Service (Katims et al., 1995). Each

problem activity is based on a newspaper article that sets the context for a model-eliciting problem

(Lesh and Lamon, 1992). Ms. Turner chose the CD Toss problem to accompany a short unit on

probability, and the Million Dollar Getaway problem as part of an interdisciplinary unit on the

Holocaust where the mathematics classes focused on the magnitude of large numbers and

particularly the size of one million.

The CD Toss problem involves designing a game board for a school fund raising event.

Players toss a CD onto a grid, trying not to land on any lines. The problem also includes making

decisions about the price of throwing two sizes of compact discs with 5 inch and 3.5 inch

diameters. A letter is requested by the carnival planning committee that describes the game

board, and justifies why it would be a successful game for the fund raising event.

The Million Dollar Getaway problem activity involves analyzing the situation where a report
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is made about a person who robbed a bank and apparently walked away with about one million

dollars in a large leather bag, where the majority of the cash is one, five, and ten dollar bills. A

report explaining the plausibility of this situation is requested by a local news editor who plans to

talk about the robbery on the evening news (Katims et al., 1993).

Data Collection and Analysis. Sources of data included interviews with Ms. Turner and

classroom observations. Ms Turner's class was observed a total of 29 days, where 12 of the days

were spent implementing the real-world problem situations. For each problem, one day was spent

introducing the problem by reading the accompanying newspaper article and discussing the

context of the situation, 3 to 4 days involved working in groups,3 and 1 to 2 days involved group

presentations and some discussion. The data were examined for emerging patterns and themes

using the process of decontextualization and recontextualization (Tesch, 1990).

Results

Expectations related to reasons for choosing to use real-world problems

Ms. Turner chose to use the two real-world problem activities for specific reasons that

included (1) making connections between the mathematics involved in the problems and real-

world events in the lives of her students, (2) developing mathematical reasoning, and (3) ensuring

the inclusion of several topics in the curriculum such as probality, area, and volume.

Real-world connections. The CD Toss problem was viewed by Ms. Turner as an activity

that might motivate her students to participate in the school's first Math Fair since one of the other

mathematics teachers had planned to have a booth at the fair with a similar game. Consequently

she scheduled time for the students to work on the problem during the same week as the Math

Fair. Later in the spring, when Ms. Turner's team (including the Social Studies, Science, and

Language Arts teachers) was planning an interdisciplinary unit about the Holocaust, Ms. Turner

thought the Million Dollar Getaway problem would "... fit in absolutely perfect!" to help the

students understand the magnitude of the large number of people who were involved.

Ms. Turner was interested in trying new ways to teach mathematics by in solving her

students as much as possible (rather than a sit and absorb approach), and thought it was important

that the context of the problems were such that students would be able to relate to the situations.

Because she hoped the context of the problems would connect with students' understanding of

events in the real-world outside of school, she expected that they would be interested,
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motivated, and able to at least make an attempt to construct a solution to each problem.

Mathematical reasoning. Since both problems allowed for more than a single approach or

answer, Ms. Turner saw an opportunity for her students to be exposed to situations that would

allow them to begin to develop mathematical reasoning skills. The implementation of the problem

activities afforded potential experience in reasoning, justifying, and explaining both orally through

presentations by student groups to the rest of the class of what they had done or were trying to

do, and through written products in the form of a letter or report as requested by the respective

client in each problem. While students were working in their groups, Ms. Turner communicated

her expectations through comments such as the following: "... but one of the things you're going

to have to do is justify your answer, this is why we did it this way ..."; "1 wanna know why, the

reasoning behind it ..."; and "as long as you can justify mathematically that would be a fine

answer." During the students' first round of presentations on the CD Toss problem, Ms. Turner

provided feedback such as: "Excuse me, you're supposed to be justifying this!" when a group

responded "I don't know" to the question "Why does the smaller [disc] cost less?" asked by

another student in the class. To another group Ms. Turner responded "I would still like you to

make some prediction as to how many times people would win, based on mathematics not based

on 'I think' or 'maybe'?

While Ms. Turner seemed to indicate that learning to reason, explain, and justify solutions

to problems in mathematics is important and worth the time it takes to do extended projects such

as these problems, she realized that it was difficult for these students who were unaccustomed to

this type of activity. In fact, she indicated her students generally resisted having to write or explain

what they did and that "they seem to be ditto worksheet oriented, short problems, short answer ...

they don't want to do anything, they don't want to put the time into it, and they see no reason to

go through all that, a quick answer, a quick job ...." In spite of the struggle Ms. Turner felt as she

encouraged the students to write explanations and justify their solutions, she still indicated that

the experience was important for the students particularly because the state testing was being

changed to include performance assessment tasks requiring written explanations.

Mathematics content. Ms. Turner chose to do the CD Toss problem within a short unit on

probability since she viewed probability as the main mathematical concept involved in this

problem. Ms. Turner decided to use this unit and the CD Toss problem activity as a way to extend
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the previous unit on fractions, but within a new context--a context that she thought would be more

interesting and meaningful to the students. As she introduced the CD Toss problem to the

students she commented "Remember the probability we've just been working on, and see if

there's a reason that [I] chose to go over some probability with you before we did this." The unit

on probability included performing experiments pulling colored chips out of bags, rolling two dice,

recording experimental probabilities, and calculating theoretical probabilities of the same events.

Since the CD Toss problem was the first activity of this kind that Ms. Turner had

implemented, knowing her students did not have much experience with solving real-world

problems, and thinking that an ar,alysis of the problem using ratios to compare winning area to

losing area on the game board might be difficult for the students, she was not sure what to expect.

After the students gave their first round of presentations where only three of the seven groups

reported the chances of winning (based on their experience of playing with cut out paper discs

and their constructed game board, an approach perhaps suggested by their previous classroom

activities in the probability unit), Ms. Turner decided to discuss how they might be able to predict

the number of winners. After showing the students an example of how to calculate a ratio

comparing winning area to losing area, she said to the students "... now see if working something

out like that will help you with the probabilities here." In a second (and final) round of

presentations after another class period for making "revisions" with explicit direction from Ms.

Turner to try the approach she had demonstrated, only one group successfully explained how

they used the approach to analyze their game board.

Ms. Turner thought that the Million Dollar Getaway problem was more straight-forward, and

would be easier for the students to understand and construct reasonable solutions involving a

combination of bills that sum to a million dollars, some statement about the volume (dimensions) or

weight of the money, and a mathematical justification of their solution. Although she had not yet

taught a unit including area and volume, Ms. Turner scheduled this problem activity during the part

of the school year when she normally covered those topics. She felt that she was running out of

time (it was near the end of the school year), and thought that doing this problem would provide

the opportunity to discuss these topics, as well as the more general topic of measurement.

During the time that Ms. Turner observed students working in groups, she frequently

asked individual students or groups such questions as "How big would the suitcase have to be?"

195 210



and "Could [the robber] carry it?" During the first round of presentations, all of the groups

reported how they were trying to decide how much room the money would take up and Ms.

Turner responded "... so what are we missing? In addition to this we have to be concerned with

what? How heavy the thing would weigh." Although she had originally expected the students to

make some statement about volume or weight, she seemed to indicate to the students that their

final solutions should Include something about both volume and weight.

101111 11 1.14 a -11, GI 10 1111 *I

The implementation of these two problem activities provided opportunities to gather

information from class discussions, observations of group work, listening to oral presentations,

and looking at final student products. Ms. Turner seemed to gather most of her information from

the students' presentations and final products. Part of the explanation might be that she was

absent during 3 of the 7 days while groups were working; however, even when Ms. Turner was

present during other days that groups were working, her interaction with the groups was minimal.

Ms. Turner did not take notes on her observations of students except during the presentations

when she sat in the back of the room and recorded some of the content of the presentations. Ms.

Turner also had a system of recording checks, pluses, or minuses for student effort or

participation which she used during the presentations and class discussions. Before the

students presented in front of the class, Ms. Turner indicated her concern and expectation that all

group members should participate by saying "We'd like to see what you've worked on. We'd like

you to present it, and we'd like everyone in your group to have something to say, ok? Just to

show us that you all worked on it."

Having something concrete such as a student product to justify a certain grade, at least on

the surface, seems to be less subjective than a "gut feeling" from observations; however, Ms.

Turner seemed to have definite theories about her students and what they were capable of based

on information from grades and her system for documenting effort and participation throughout

the school year. Ms. Turner used her observation time to confirm what she thought she already

knew about her students as indicated by her statement "... at this point in the year, their grades

are pretty much, I mean, I know what everybody is capable of ... who would do it right and who

would do it wrong, who wouldn't do it at all ...."

Although Ms. Turner only implemented two problems in the last half of the school year, it
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was possible to liotice a shift in Ms. Turner's information gathering. During the second problem,

not only was she present during most of the group work time, she interacted more with the groups

(i.e. listening to explanations and asking questions) rather than using the time to sit at her desk

doing paper work. Consequently she was able to talk more confidently about the different

approaches used by the student groups and participation levels of certain students.

As a final evaluation of using both problems, Ms. Turner thought that her students put a

lot of effort and time into both problems. However, in terms of what the students "got out of it,"

she commented for the first problem "I don't see that they got much out of it at all, at least not from

what they presented ... they're interested in a nice diagram and a pretty picture ... very little

mathematics ... there was very little change, very few corrections made" and for the second

problem "... they have the general idea ... at least they figured out how many stacks make a million

... the size of one million was there... I think most of them had answers that made sense whether

they were right or wrong, at least they had a reason." Although Ms. Turner would have liked the

students to be more careful with their calculations (referring to "right or wrong"), she was

encouraged that they had made some progress from the first problem to the second problem in

their efforts of attempting to explain and justify what they had done.

Conclusion

Teachers' attention to gathering information about students' mathematical knowledge

and understanding may be influenced by what they consider appropriate sources and evidence

based on established assessment practices. Ms. Turner's assessment practices initially

emphasized information from final products and presentations. After the first problem generated

what she considered poor quality presentations and as Ms. Turner became more involved in

observing students during the second problem, she seemed to realize that the final products and

presentations did not capture the full extent of the mathematical ideas, reasoning, tools, and

approaches used by her students. Ms. Turners' experience with using these performance

assessment tasks seemed to provide an opportunity to recognize the limitations of gathering

information from a single source as well as the opportunity to gather information from several

sources.

Teachers usually have specific reasons for choosing to use problem activities in

instruction. Certainly it is appropriate for teachers to have an agenda for accomplishing objectives
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of the curriculum and ways of assessing whether those objectives have been achieved.

However, gathering and Interpreting information about students' mathematical knowledge and

understanding Is not a trivial task. Since most teachers are used to evaluating student knowledge

from some culminating event or product rather than assessment integrated with instruction, it will

take time and experience to change their assessment practices. Ms. Turner has taken a first step.

Notes

1. This study was partially supported by the Teacher Enhancement Partnership project, funded
by NSF (grant number TPE9155307).

2. k should be noted that Ms. Turner used only the newspaper article, readiness questions, and
Focus Project (model-eliciting problem) from each of the two activity units; current versions of
these activity units include additional components that support classroom implementation.

3. It should be noted that the authors of the PACKETS® Program greatly value teacher
observations of students during the time that students are working in groups as a part of the total
assessment process. However, Ms. Turner was unable to be present during two of the four days
of group work for the CD Toss problem and one of the three days of group work for the Million
Dollar Getaway problem.

The author would like to thank Diana Wearne and Cynthia Tocci for their helpful comments on
earlier drafts of this paper.
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Multi-faceted Inferences from an Interview Assessment

Thomas L. Schroeder, State Universi"y of New York at Buffalo, USA

Task-based interviews involving a problem with two conditions were

conducted with students in Grades 7 and 10. The original focus of

the project was on students' mathematical problem solving and
their use of various strategies and approaches to the problem, but

the data that were collected have also been analyzed from the point

of view of the values, beliefs and expectations that students held
concerning mathematics, problems, and problem solving strategies.

The extent to which the students engaged in "number grabbing"
gives an indication of their disposition towards sense-making .

Students' views on the appropriateness of various strategies was

also apparent.

The work presented and discussed in this paper is part of a small-scale

qualitative evaluation of students' mathematical problem solving (Schroeder,

1992) that involved the use of a series of non-routine problems in interviews with

individuals and pairs of students. This paper goes beyond the project's original

focus on problem solving to explore additional facets of the students'

performance and to demonstrate how evidence gained in this kind of interview

assessment can be used to make inferences about students' values, beliefs, and

expectations concerning mathematics, problems, and problem-solving strategies.

The importance of these aspects of students' performance is underscored

by the National Council of Teachers of Mathematics (NCTM) Evaluation Standard

on "mathematical disposition" (NCTM, 1989, pp. 233-236) which is stated in

terms of confidence, flexibility, willingness to persevere, interest, curiosity,

inventiveness, and so on, but which is also explained in terms of the beliefs and

conceptions which students develop through their experiences in mathematics

classes and which in turn influence their future mathematical development.

Schoenfeld's review (1992, pp. 358-359) of the extensive and expanding body of
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research on students' beliefs about mathematics has shown important

interactions among problem-solving, metacognition, and sense-making in

mathematics.

Procedures

The problem "A farmer has some pigs and some chickens. He finds that

together these animals have 19 heads and 60 legs. How many pigs and how

many chickens does he have?" was presented to 41 volunteers, 20 females and

21 males, 35 in Grade 7 and 6 in Grade 10. Twenty-six of the Grade 7 students

were interviewed in pairs, the remaining nine individually; all six of the tenth

graders were interviewed individually. In the introduction to the interviews

students were informed that the activity was not a test and that their performance

would not affect their standing in their school mathematics course. They were

told that the interviewer was most interested in how they went about solving the

problem, and that they could ask questions of the interviewer at any time.

Students were urged to think aloud as they solved the problem so that the

interviewer could understand how they worked on the problem, and they were

told that the interviewer might ask them questions for clarification or give them

hints or help if they wished.

As the students worked on the problem, the interviewer observed them

closely and made field notes. At the conclusion of each interview the interviewer

collected the students' written work, annotated it, and also completed a record

sheet designed to be a convenient and standardized way of summarizing and

reporting students' work on the problem. The sections of the record sheet headed

"Understanding," "Strategy Selection," and "Monitoring" reflect Polya's (1945)

description of the phases of problem solving and the importance of metacognitive

activity in problem solving; they list a number of anticipated features of students'

work which can be checked off as appropriate, and they provide spaces in which

to describe the students' work and to note any comments they made as they
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worked and ihe answers they gave to the interviewer's questions. In the final

section headed "Overview" the interviewer is to indicate whether the students

solved the problem essentially on their own, or solved the problem with needed

help from the interviewer, or did not solve the problem even with help from the

interviewer. The amounts of time spent reaching a solution, extending the

problem or looking back, and using different approaches are also to be noted.

In preparing to use this problem, consideration was given to the variety of

ways in which students could approach and would be likely to approach and

solve the problem. Indeed, an important reason for selecting this problem was

that it can be solved by both seventh and tenth grade students in a variety of

different ways. Ths different approaches that can be used in solving this problem

include pictorial approaches, guess-and-test approaches of several types, and

algebraic approaches. A pictorial approach might involve the use of drawings or

diagrams to represent the problem, for example stick-figures to represent the

chickens and pigs or groupings of tally marks, some containing four strokes and

others with two strokes. By representing the bodies or heads first and adding the

logs later, the problem solver can reach a solution quite directly, especially if

each animal is initially given two legs and the remaining legs are added two at a

time, essentially changing chickens into pigs. Guess-and-test approaches can

range from just a series of "random" guesses, to fairly sophisticated strategies for

choosing later guesses on the basis of previous guesses. For example, the

student may start by considering 15 pigs and 4 chickens, and note that the

number of legs on 15 pigs and 4 chickens is more than 60. Then the student may

"trade in" one or more pigs for the same number of chickens, reducing the

number of legs while leaving the number of heads unchanged. A perceptive user

of this process might even reason that there with 15 pigs and 4 chickens there

are 8 too many legs, so that 8 legs must be removed from 4 of the pigs yielding

the correct solution 11 pigs and 8 chickens. Without capitalizing on this insight,
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the problem solver may solve the problem by repeating the process of trading

pigs for chickens or vice versa as many times as needed. Making a table can

also help the problem solver select the successive guesses systematically.

Algebraic approaches can also lead to a solution. For example, if x = the

number of chickens and y = the number of pigs, then the given fact that there are

19 heads is represented by the equation x + y 19, and the fact that there are 60

legs is represented by 2x +4y = 60. This system of equations can be solved by

expressing one variable in terms of the other and substituting, or by multiplying

one equation by a constant and adding or subtracting it with the other. Writing

and solving an equation in one variable is similar to the substitution method for

solving two equations in two unknowns.

Results

in the discussion which follows, the unit of analysis is the interview.

Because of the small numbers, results are not reported separately for males and

females nor for students interviewed individually or in pairs. However, the results

for Grade 7 students are considered separately from the results for Grade 10

students because of the substantial differences in their respective mathematics

backgrounds, which influenced not only their problem-solving strategies and

mathematical approaches, but also certain of their beliefs and expectations. The

overall results for Grade 7 were that in 16 of the interviews (72%) the students

solved the problem on their own, and that in 6 interviews (28%) the students

solved the problem with help from the interviewer; in none of the interviews did

the students fail to solve the problem. Five of the six Grade 10 students solved

the problem on their own; the remaining student solved the problem with help

from the interviewer. The total length of time spent in each interview varied from

5 to 35 minutes; the time to solution ranged from 3 to 29 minutes.

In both grades by far the most widely used strategy for reaching a solution

was guess-and-test. Guess-and-test was used in all of the Grade 7 interviews,
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but in eight of these interviews (44%) a pictorial approach was used together with

or instead of a verbal or numerical form of this strategy. In two interviews (9%)

the students chose on their own to keep track of their guesses in a clear table or

list, and in several other interviews the students did so when the interviewer

suggested it. In half of the Grade 10 interviews guess-and-test was the initial

strategy that led to a solution; in the other interviews the initial solution was

algebraic. All three Grade 10 students who initially used algebra showed they

could use guess-and-test, which they referred to as "the long way," when they

were asked by the interviewer for a different way of solving the problem, but two

of the three tenth graders who initially used guess-and-test were unsuccessful

using algebra to solve the problem when it was suggested that they do so.

Interestingly, the average time to initial solution was no greater for those students

whose initial solution was by using guess and test, than for those students whose

initial solution was algebraic; in fact several students' solutions by guess and test

were faster than any student's algebraic solution.

In about half of the interviews with students in each grade the students

used the pseudo-strategy which has been called "number grabbing" (Szetela,

1991, p. 197), that is, using the numerical values given or implied in the problem

with arithmetic operations to get an answer, without regard to whether it makes

sense to carry out those operations using those numbers. Several students

began working on the problem by dividing the two given numbers, 60 and 19, and

some of these students tried to use the result, 3.15 (the average number of legs

per animal), as they proceeded with a guess-and-test strategy, but others ignored

this result and attempted other meaningless computations. For example, one

student divided 60 by 4 and 19 by 2 and answered that there were 15 pigs and

9.5 chickens. In a particularly blatant instance of number grabbing, another

student added 60 and 19, divided this sum by 2 to find the number of chickens

(38.5), and divided this sum by 4 to find the number of pigs (19.75).
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Discussion

The prevalence of "number grabbing" as an initial approach to this

problem suggests that many students have the expectation that the verbal

problems to be solved in mathematics classes are simple ones in which the

numeric data given in the problem will be used with a few arithmetic

computations to find the answer directly. While some students relatively quickly

concluded that this was not the case with this particular problem, some other

students were quite persistent in trying computations that they thought might

work without bothering to consider whether those computations were sensible

ones. In these interviews the extent to which the students continued in the

"number grabbing" mode gives a good indication of the extent to which their

mathematical disposition inclined them to sense-making and checking of results.

Virtually all of the Grade 7 students interviewed seemed to believe guess-

and-test was a legitimate and appropriate strategy for solving this problem. One

seventh grader, however, wrote nothing on paper but seemed to be

concentrating intensely on unspoken mental computations. After about three

minutes of effort, the interviewer asked him whether he wanted to write anything

down, but he declined. A short while later the interviewer asked if he could

explain what he was thinking, but the student's only reply was to give the correct

solution to the problem and a justification of that answer in terms of the numoer

of animals and the number of legs. This student, unlike most of the other seventh

graders, seemed embarrassed that he did not know the answer immediately, and

unwilling to admit that he used guess-and-test as his solution strategy.

An interesting incident that sheds light on students' views about what

approaches and strategies are appropriate and valid ones occurred during the

period of data collection. It happened that two siblings in different grades and

different schools were both interviewed on this problem a few days apart. The

seventh grader later reported to us that she had told her older brother about her
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interview on the problem and her solution of it by guess and test. She reported

further that her brother had told her that "it was OK for her to solve the problem

that way," but that when she got to tenth grade she would "have to use algebra to

solve it, b &cause algebra was a better method." This comment may well reflect

what students have been told by their algebra teachers, but if time-to-solution is

the criterion for a "better" method, then this viewpoint is not supported by the data

that were collected.

The priimary focus of the interviewers' observations was on the students'

problem solving, their choice of strategies, and use of mathematical processes.

At the same time, howver, their behavior can be analyzed in terms of the beliefs

and dispositions that are reflected in it. In the development of alternative

assessments in mathematics, interview tasks such as this one have potential to

give insight into several dimensions of students' mathematical power and their

mathematical disposition.
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ASSESSING STUDENTS' MATHEMATICAL ACTIVITY IN THE CONTEXT OF DESIGN PROJECTS

Judit N. Moschkovich

Institute for Research on Learning

Palo Alto, CA U.S.A.

Research in cognition and learning has pointed out the need for closing the gap between learning

mathematics in and out of school (Carraher, Carraher, and Schliemann, 1985; D'Ambrosio, 1991; Lave,

1988; Saxe, 1991). This perspective redefines what mathematics is and extends mathematical activity to

include more than using rote algorithms. Following this perspective, current curriculum guidelines and

standards for mathematics call for engaging students in "real world" mathematics rather than mathematics

in isolation of its applications. However, it is not clear how application projects will change students' activity

or how these projects will affect assessment practices.

The Middle-school Mathematics through Applications Project (MMAP) is designing curriculum

materials in line with these standards and investigating students' activity when using these materials in the

classroom. In this alternative learning environment students explore mathematical concepts in the context of

design projects. One of the 4-6 week units, Antarctica, puts middle school students in the role of designers

who are creating a research station for a scientific expedition to Antarctica. This unit guides the students,

working mostly in small groups, through the design and analysis process. Tools include ArchiTech, IRL-

designed software that allows students to create floor plans and analyze information on their station's

heating and building costs.

This poster presents the preliminary analysis of research undertaken in one MMAP classroom using

videotapes of classroom interactions. The analysis examines the concept of "authentic assessment" as a

way to clarify the goals and motivations for classroom assessment practices. Two senses of authentic

assessment are explored from within two theoretical frameworks, ethnomathematics (D'Ambrosio, 1985)

and the didactical contract (Brousseau, 1981). The paper also addresses several questions encountered in

the design and investigation of assessment practices: How does a design project affect classroom

assessment practices? How are the assessment needs different than in a traditional classroom or in a work

setting? What is a reasonable focus for assessment practices: the design process, uses of mathematical

tools, use of mathematical argumentation, or other areas?
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A MODEL FOR ASSESSING CHILDREN'S MATHEMATICAL THINKING IN CLASSROOMS

WHERE REFORM IS TAKING PLACE

Roberta Schorr, Carolyn Maher, Alice Alston

Rutgers University

The constructivist position maintains that 1) mathematical learning involves the active manipulation

of meanings; 2) individuals learn by building understanding and knowledge through acting on objects

(which may be mental objects) and interacting in a variety of social contexts; 3) activities that emphasize

inquiry and exploration help students develop greater conceptual knowledge; and 4) learning mathematics

for understanding requires that students experience mathematics as a subject that can be understood. A

constructivist perspective places emphasis on learning from experience, for teachers as well as their

students. With this in mind, reform movements such as the New Jersey Statewide Systemic Initiative, have

been initiated to go beyond traditional inservice, to develop in teachers a high degree of mathematical and

pedagogical competence, focusing on students' thinking and reasoning as they actively construct

mathematical ideas.

As we begin to implement reform, it is important to develop appropriate assessment models to

analyze their effects on children's mathematical thinking. Beyond merely examining standardized test

scores, we believe that performance must be examined according to a number of cognitive and

metacognitive dimensions. These include: 1) processes by which the students build their solutions to a

problem; 2) students' use of heuristics; 3) models they build; 4) language used to communicate solutions;

5) the nature of the representations that are constructed; 6) the ability of the students to he metacognitive;

7) their ability to generate descriptions, explanations, and predictions for other mathematical problems; 8)

their ability to reflect on their own problem-solving capabilities; and 9) the richness and depth of their

solutions.

We have developed a model for assessing the impact of a long-term teacher development

partnership between an urban school district and Rutgers University. The model involves a comparison

of students taught for a period of three years by teachers considered successful in incorporating the

philosophies and perspectives of the project with other students taught by non-project teachers. The

problem-solving behaviors of both groups of children were carefully observed and videotaped during in-

class activities in which they and their classmates were given authentic mathematical problems to solve.

This experience was followed by two task-based interviews conducted by nationally and internationally

recognized experts in the fields of mathematics and mathematics education. Profiles of the children were

developed and comparisons are being made according to a list of dimensions indicative of higher-order

mathematical thinking.

The results of this assessment study should provide important implications for studying future

programs designed to impact instruction, in particular for initiatives for systemic reform. The model for

assessing student learning will he shared in this session offering, a forum to consider the multi-dimensional

aspects of this research.
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VISUALIZATION IN MATHEMATICS: SPATIAL REASONING SKILL AND

GENDER DIFFERENCES

Lynn Friedman

University of Minnesota -- Twin Cities

Summary: The relationship of spatial and mathematical abilities has been the

subject of both speculation and empirical investigation. This work reports on a

meta-analysis of correlations of spatial and mathematical tasks, with particular

attention to the possibility that spatial ability is responsible for gender

differences in mathematical performance. Early research indicates that overall

correlations of tests of these abilities are not high. The research reported here

focused on areas in which mathematical gender differences appear. Female

space-math correlations were higher than males' on college entrance

examinations. Studies were separated according to academic level of sample:

the more select the sample, the larger the difference in correlations.

Introduction

This work summarizes correlational evidence on a proposed explanation

for gender differences in mathematics. The explanation was suggested by Julia

Sherman (1967), who speculated that the socialization of females towards

verbal and away from spatial activities might be at the root of their inferior

performance in many cognitive areas, including mathematics. Small gender

differences are still sometimes found on spatial and mathematical tests,

particularly in high school age youth, though these are decreasing (see, e.g.,

Friedman, 1989; Hilton, 1985).

The relationship of mathematical and spatial reasoning had intrigued

researchers well before Sherman made her conjecture. In the 1960's, several

psychometricians proposed that spatial ability, or another even more

fundamental trait producing it, enabled those who possess it to reason more
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effectively (e.g., Smith, 1964; Witkin et al., 1962). Smith particularly singled out

mathematical reasoning as requiring spatial ability: others have supported the

same view more recently (e.g., Battista, 1994; Burnett, Lane, and Dratt, 1979). A

large body of research has developed on the relationship of spatial and

mathematical skills.

A good portion of this research deals with mathematical gender

differences. Schonberger (1976) and Tartre (1990) have reported evidence

which is somewhat inconsistent with Sherman's conjecture: Schonberger found

no evidence that gender differences in mathematical problem solving were a

result of differential spatial skill. Tartre (1990) found that spatial skill did not

contribute to better mathematical performance in males. However, she did

conclude that spatial ability was better related to mathematical performance for

females. Many researchers before Tartre had suggested that the relationship

of spatial and mathematical skills appeared to be gender-specific: several early

researchers had found different factor structures for females and males; later

work in correlations found differences (e.g., Weiner, 1984).

To give an integrated picture of the research, Friedman (in press) used

meta-analysis to combine correlations of spatial and mathematical tasks. She

combined zero-order correlations, as these are the most frequently reported by

those doing empirical investigations on the topic. She found that, overall,

space-math correlations were not high. However, if space-math correlations

calculated separately by gender were to show different patterns, particularly in

the mathematical areas in which gender differences appear, or if there were

direct gender differences in correlations, spatial skill might still be their sourco.

This work reports on comparisons of correlations calculated separately

by gender. Study variables such as age and selectivity of sample, type of spatial

or mathematical test used, and year of publication were explored. Gender

patterns of verbal-math and space-math correlations were contrasted, to search



for evidence of differences in clusters of skills.

Neither mathematical nor spatial skills are considered unitary today.

With regard to mathematical tasks, a relatively complex categorization of tests

into computational, conceptual, and problem-solving and mixed categories was

first undertaken. However, this division yielded no more information than a

simpler categorization into computational or reasoning tasks.

Spatial skills ordinarily designated "orientation" and "visualization" were

targeted, as these are most often considered reasoning processes.

Researchers vary widely in their description of these constructs: however, they

generally all involve mental transformations of objects or parts of objects. Most

commonly, orientation is taken to mean an holistic imagining of simple rigid

motions of whole objects. Visualization, is then taken to involve multi-step

reasoning about parts of objects. Putting the pieces of a tangram together to

form a certain shape is a typical two-dimensional visualization task.

Recognizing the shape that would be formed by folding a thin sheet of material

along given lines is a typical three-dimensional visualization task. These

descriptions of orientation and visualization, articulated by Michael, Guilford,

Fruchter and Zimmerman (1957), are used here. In addition, following

Schonberger (1976), we divide spatial tasks by dimension. Tasks not

conforming to these descriptions of orientation or visualization, such as map-

reading or Gestalt Completion exercises, were not considered.

Method

Seventy-five studies reporting gender-specific information on

correlations between mathematical and spatial skills were gathered using

searches of bibliographies of books and journals known to the author and

searches of three computerized data bases, ERIC, PSYCHINFO, and

Dissertations Online. Criteria for selection of studies primarily involved the

specific spatial skiiis they tested.
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The meta-analytic techniques used were based on those developed by

Hedges and Olkin (1985) for combining correlations from several studies,

testing for homogeneity, and fitting random effects and linear models. Two

general types of analyses were carried out. The first was a direct comparison of

male and female correlations: when both were reported in a study, differences

of Fisher z- transforms of the correlations were calculated. These differences

were then combined, and the average mean difference reported. The second

type of analysis involved contrasting different types of correlations from the

same samples. This latter type of analysis was more complex, as correlations

of correlations must be considered.

Results

Verbal-math versus space-math correlations. For both genders, verbal-

math correlations were almost always numerically higher than space-math

ones; when a statistically significant difference was found, it favored verbal-

math correlations. Samples were divided by age: when the average age of the

sample was less than 14 years, thg.. sample was considered "younger."

Statistically significant differences were more often found in combined

correlations of older samples than younger ones. In younger samples, the

difference between verbal-math and space-math correlations had a tendency to

be larger for females than males.

Area of mathematical test. Small gender differences in achievement

favoring males are often found on geometrical and problem-solving tests.

College entrance examinations also show gender differences in the same

direction. No gender differences in space-math correlations were found when

the mathematical test was geometrical or of the type explicitly designated

"problem solving". Correlations were small in these areas. The SAT-M,

however, did produce relatively substantial correlations with spatial skills, and

these correlations did show a gender difference: females' space-SAT-M
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correlations were higher than males. This led to an investigation of selectivity

of sample.

Selectivity of sample. In more selected (elite high school or college) and

highly selected (young gifted or elite college) samples, females' space-math

correlations were higher than were males'. This was not true in unselected

samples. The table below gives these results.

TABLE. Gender differences in space-math z- transforms for students at varying

age levels in samples divided according to selectivity.

Mean r Number Mean

of Studies Difference

CI

Average samples

Females .44 26 -0.01 (-0.03,0.02)

Males .44

Moderately selected samples

Females .39 14 0.07 (0.01,0.13)

Males .31

Highly selected samples

Females .46 7 0.15 (0.02,0.28)

Males .35

NOTE: The mean r is given for the groups of correlations to illustrate their level: the mean

difference is not the difference between these two numbers or their z-transforms, but the mean

of the differences computed in studies., CI = 95% confidence interval for the mean difference.

Implications

The first result indicates that verbal skills are better related to

mathematical skills than are spatial skills throughout the school curriculum. It
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suggests that verbal skills may be more related to mathematical skills for young

females than they are for males: However, there are no gender differences in

space-math correlations for these students. As the verbal-math relationship is

stronger than the space-math one, it is unlikely that emphasizing spatial

reasoning will have much effect on test scores in mathematics as mathematics

is tested today. The overall low spatial correlations also suggest this. We

cannot predict from this evidence, however, what would happen should the

mathematics curriculum change or be tested differently.

The second result indicates that gender differences in correlations do not

appear in the types of mathematical tasks which ordinarily show small gender

differences in achievement. College entrance examinations show gender

differences in correlations, but these tests are not of a special kind of

mathematical content: they differ from other mathematical tests primarily in the

subjects who take them. Students taking these exams are academically select.

The third result substantiates the second: non-verbal skills cluster together

more frequently in females than males in selected samples. Age is a factor in

these samples: they are all of junior high school age or older. Because gender

differences in correlations do not appear in younger samples or as function of

the mathematical task, environmental and socialization factors are more likely to

explain this difference than are cognitive processes. Students must become

interested in non-verbal reasoning and convinced of its value at an early age:

encouragement in these directions may be particularly beneficial for females.
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NEGATIVE CONSEQUENCES OF ROTE INSTRUCTION

FOR MEANINGFUL LEARNING

Dolores Simoneaux David Kirshner

Southeastern Louisiana University Louisiana State University

Hammond, Louisiana Baton Rouge, Louisiana

This research investigated the negative consequence of rote

(relationship-poor) learning preceding meaningful (relationship-rich)

learning, a classroom sequence frequently resulting from conflicting

administrative and professional directives. 71vo similarly designed studies

were conducted: a generic and a mathematics specific. In both studies

Group 1 was assisted in rote then meaningful learning, whereas Group 2

received only the briefer meaningful instructional unit. On post-tests

Group 1 scored significantly less well than did Group 2 suggesting an

interference had been developed due to prior rote learning.

Although terms and definitions are variously given, there is a long -c itablished

distinction in the literature between meaningful and rote teaching-and-learning (Ausubel,

1963; Brownell, 1935; Bruner, 1960; Gagne, 1985; McLelland & Dewey, 1895; Skemp,

1987; Thorndike, 1922). A common theme in this literature is that meaningful indicates

a richness of relationships (within the mathematical sphere or as extension to external

domains); rote indicates a relative absence of relationships (Hiebert, 1986).

This distinction is especially important in view of ongoing tensions in the field.

The professional mathematics education community strongly advocates models of

meaningful learning and teaching (NCTM, 1989). Administrative branches are more
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closely wedded to the sorts of easily measured gains that rote learning effects (Baker,

1990; Brockett, 1992). The conscientious teacher wishing to explore the practices

advised by the professional leadership, but also to heed legislative and administrative

directives, will be tempted to adopt a two-track policy: invest some instructional time in

relational teaching; but maintain instrumentalist practices to assure students' test-readiness

(Romberg, Wilson, Khaketla, & Chavarria, 1992). Underlying this compromise is an

additive model of learning: If the total teaching time, T, is apportioned as R and I to

relational and instrumentalist teaching, respectively, then the total student learning L(T)

should be equal to L(R) + L(I). Indeed more optimistic educators may even hope that

the two approaches to teaching will mutually reinforce each other, producing more than

just the sum of the parts.

This paper calls into question the viability of this two-track compromise by

challenging the underlying additive model. Our study investigated the interaction of these

teaching modalities by providing one group of students with an instrumentalist (rote)

curriculum followed by a briefer relational (meaning-rich) curriculum. A second group

of students was provided only with the relational instruction. This basic design was

implemented in two separate investigations using two separate contents: a generic content

stemming from a picture grammar devised by Skemp (1962); and a mathematical content

involving perimeter and area of simple figures. Previous studies have investigated such

sequencing effects (Whitman, 1976; Kieran, 1984; Hiebert & Wearne, 1988; Mack,

1990); however, none was set up for the specific interference hypothesis studied here, so

none controlled the rote treatment rigorously.
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Design of the Studies

Generic Content Study (49 eighth graders): Skemp's (1962) picture grammar employs

pictographs to represent concepts. For instance

A, represents dries, E represents apparatus,

0 represents container,

El represents

cloth, represents electricity, 0 ©0 represents heats, etc. These

pictographs can be clustered to represent higher level concepts. For instance, CIO
000 An

represents clothes hamper, and tro ED represents clothes dryer, etc.

In the rote treatment, Group 1 was given a class period to memorize six symbol

clusters and they translations. Various instrumentalist teaching techniques were used to

facilitate memorization including repetition, flash cards, and extrinsic reward. In the

meaningful treatment students in Group 1 and Group 2 were instructed on the meanings

of the individual symbols and shown how the meaning of a symbol cluster is related to

its discrete symbols. Group 2 received only the single period of meaningful instruction.

Mathematics Content Study (99 fifth grader* The mathematics content involved

perimeter and area of simple geometric shapes (rectangles, squares, triangles, and

parallelograms). In the rote treatment, Group I received five days of instruction to

memorize and apply the formulas for area and perimeter of the simple shapes.

Instrumentalist strategies including small group practice, flash cards, and repetitive drills

were used to aid students in memorizing the formulas as isolated pieces of knowledge.

In the meaningful treatment, Groups 1 and 2 were actively involved for three days with

a variety of manipulative materials (geoboards, square tiles, grid paper) to assist them in

constructing a relationship-rich knowledge of area and perimeter, and in developing

methods for calculating area and perimeter measures of simple figures. Group 2 received

only the three days of meaningful instruction.
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Analysis and Results:

Because its content was entirely unfamiliar to all subjects, the first study used a

posttest/retention test design. The second study used a pretest/posttest/retention test

design. For both studies the critical dependent variable was the students' comprehension

of the material including their ability to transfer their learning to new items and tasks.

The results for both studies (See Tables 1 and 2) substantiated the unproductive

consequences that can develop from the two track approach to learning. The students

who were given initial exposure to rote methods prior to meaningful instruction (Group

1) scored significantly less well than their counterparts exposed to the meaningful

instruction only (Group 2).

Table 1

Mean Results for Transfer Items in Generic Content Study

Analysis Posttest' Retention Test**

Treatment

Group 1 38.29 21.24

Group 2 63.96 35.89

F1,41=10.03, p =.0029

F1,41= 4.87, p=.0329
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Table 2

Mean Results for Mathematic5. Content Study (Pretest Used as Covariate)

Analysis Pretest Posttest' Retention Test"

Treatment

Group 1 9.80 14.31 13.68

Group 2 10.69 16.35 15.13

F,,85=4.78, p=.0315

F1.85=4.37, p= .0396

Learning Interference

Videotaped interviews with selected students in the second (mathematics content)

study were used to gain more insight into the mechanisms of learning interference.

Several students who received both instructional modes felt they learned more during their

rote session. Somehow the experience of memorizing material and being able to

regurgitate it equated to learning for these students. Perhaps just this expectation of what

learning should be like in schools, contributed to the interference effect.

Students receiving the initial rote instruction repeatedly confused area and

perimeter in transfer problems - an effect almost entirely absent for students experiencing

only meaningful instruction. For instance a problem about the surface area of the wall

of a room was interpreted as a perimeter problem because of the enclosing aspect of

walls. Or to determine the amount of lumber needed to build the walls of a dog house,
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students said one needs to know the perimeter "because the wall goes around."

Group 1 also tended to overgeneralize. They applied area and perimeter to liquid

measure and length, and otherwise were more concerned about what mathematical

operations they were using, than why they were using them.

Generally, the memorization of fOrmulas to obtain area and perimeter measures

seemed to inhibit the free, open-ended, creative explorations of ideas and materials

observed in students receiving only meaningful instruction. For example, a student in

the meaningful-only group explained that she could get the area of the room by taking

"those books and start putting them out (on the floor) and (counting) how many books

I put out." Skemp (1987) lists the ability to adapt to new tasks a consequence of

meaningful learning. This kind of creative thinking was not observed in students

receiving prior rote instruction.

Interference resulting from initial rote learning can be understood in terms of

Piaget's (1967/1977) notions of disequilibrium. Rote learning sets up superficial

associations related to solution procedures. These may conflict with subsequent

meaningful instruction. In such cases, either prior structures remain, thus making new

relationships impossible; or, structures have to be unlearned and new relationships

constructed. This unlearning and relearning creates unnecessary obstacles (interferences).

Thus when initial mathematics instruction of a concept focusses on memorizing

procedures, facts, and definitions, subsequent meaningful learning may be impaired. This

study therefore problematizes the simplistic solution of combining rote and meaningful

instruction that teachers may be tempted to adopt as a means of mediating conflicting

professional demands.
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LONG TERM RELATIONSHIP BETWEEN SPATIAL ABILITY
AND MATHEMATICAL KNOWLEDGE

Grayson H. Wheatley, Dawn L. Brown and Alejandro Solano
Florida State University

In this investigation we studied the use of imagery and mathematical
understanding in students who had previously been studied in fifth grade.
These students were in tenth grade at the time of the investigation. Thirty
two of the original students who had been given the WSAT and five of the
six interviewed were available for retesting. The results showed a
moderately strong correlation between fifth and tenth grade scores on the
WSAT. The qualitative analysis of clinical interviews showed a strong
consistency of orientation to mathematical problem solving.

There is a long history of interest in the relationship between spatial ability and

mathematical knowledge. Kruteskii (1976) identified two distinct casts of mind, the analytic

and the geometric. According to Kruteskii, a person with a geometric cast of mind makes

extensive use of imagery in his or her mathematics learning. In our work we have focused

attention on the role of imagery in mathematics learning. Currently, there is increased

interest in this topic. For example, the National Council of Teachers of Mathematics in the

Curriculum and Evaluation Standards has called for more attention to what they refer to as

spatial sense. The evidence supporting a major role of imagery doing mathematics is

mounting (Brown, 1993; Brown and Wheatley, 1989; 1990; Reynolds, 1993; Reynolds

and Wheatley, 1992; Wheatley, 1990; Presmeg, 1985; 1986).

The studies mentioned above, however, have concentrated on students of a

single age. Brown, Reynolds and Wheatley studied students at the elementary school

level, while Presmeg's studies were limited to high school students. Brown and Presmeg

(1993) studied students in both fifth and eleventh grades and found that they used the

same types of imagery and in many of the same ways, bisg. this study used different

students in the two groups. We do not know if students who make extensive use of

imagery in elementary continue to do so as they move to high school.

The purpose of this study was to reinvestigate the role that imagery plays in the

mathematical activity of students who imagery had previously been probed. By doing so

we hoped to see if long term consistency could be found. That is, if students who scored

well on a test of mental rotation and who showed a good relational understanding of

mathematics in elementary school continued to do the same while students who had

performed poorly continued to do the same. In order to do this students who had

previously taken the WSAT and been interviewed in fifth grade (Brown and Wheatley,

1989) were retested and interviewed as tenth graders.

METHOD

Of the 54 students who had been given the WSAT in this group as fifth grade

students 32 were still at the same school and enrolled in mathematics classes. As tenth
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grade students most were enrolled in geometry classes, although some were enrolled in

Algebra I or II. Of tha six girls who had been interviewed as fifth grade students five

were still at the school and consented to be interviewed.

For the quantitative analysis students were administered the Wheatley Spatial

Ability Test (WSAT), a test of mental rotations. The WSAT is a 100-item two dimensional

test which has been described previously (Brown and Wheatley, 1989; 1990; 1991).

Previous data indicated that the 8-minute time limit was too long with older students so in

this administration the lime limit was changed to seven minutes. All other procedures and

scoring remained the same, however.

The test was administered to the tenth grade students in three groups. For two of

the groups the tests were administered during their mathematics classes and all students

in the classes received the tests. For the fourth group the test was administered in the

school auditorium.

Data for the qualitative analysis was obtained in a single clinical interview with

each of the five students which lasted about 60 minutes. Tasks for this interview were

chosen to provide more information about the students' use of imagery and mathematical

reasoning. Tasks were assembled which required a wide range of mathematical

sophistication. As the interview progressed, tasks were chosen by the investigator

which were felt potentially problematic for that individual student, but not beyond his

range. Some tasks were given to all students. The interviews were video recorded for

later analysis.

Three tasks were used to probe students' imagery. The Tangram Pattern Task

was an adaptation of one that we have used with elementary grade students and which

had been used previously with high school students (Brown and Presmeg, 1993). In this

task students are given a blank form and a set of tangrams. They were then briefly

shown a pattern which they were to use to fill the form. For use with these older students

two more complex patterns, which used six and seven Tangram pieces were added if the

students performed well on the simpler problems.

A surface development task was also designed. In this task the student was

shown: 1) a flat template for a cube with some sides shaded and the letter "E" on one side

and 2) a drawing of a cube. The student had first to decide if the template could be folded

to make any solid cube. They were then asked to decide if it could make the particular

cube shown based on the position of the shaded sides and the orientation of the letter

"E." The other three dimensional task was a bisection of a cube task. In this task

students where shown a solid regular cube. They were then asked to think of ways in

which they could cut the cube so that resultant face made different geometric shapes and

what these shapes were.

Two of the mathematical problems were given to all of the interviewees. They
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were:

THE PAINTED CUBE PROBLEM. There are 343 small cubes arranged in a 7 by 7 by 7

large cube. If the large cube is completely painted on the outside how many small cubes

will not have paint on them?

TIGERS IN CAGES. There are 15 tigers and 4 cages. There must be a tiger in each

cage. No two cages can have the same number of tigers. How many ways can the

tigers be put into cages?

The interview also included at least one task which involved proportional reasoning and

least one area problem.

RESULTS

Quantitative analysis. Figure 1 shows the frequency distribution of scores for the
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Figure 1. Frequency distribution of WSAT scores for fifth (A) and tenth
(B) grade students. Scores are on the abscissa, number of students
on the ordinate.
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32 students as well as group means and standard deviations. A) is the WSAT scores as

fifth graders, B) the WSAT as tenth graders. There is a distinct negative skew in both

sets of WSAT scores although this effect is most clearly seen in the tenth grade scores.

Almost half of the tenth grade students scored between 95 and 100 indicating a ceiling

effect was operating. Any quantitative analysis, then is limited by these results. Most of

the students were able to complete the test well before the time limit, indicating that the

shortened time was still too long for the test. The WSAT has been administered to many

groups of students and the reliability has always been shown to be high (KR- 20 >.91).

A correlational analysis using Pearson's r showed a good correlation between the

fifth and tenth grade WSAT scores (r=.48). This is a moderate relationship, and was

probably limited to the extreme negative skew of the tenth grade WSAT scores. If this

effect had not been operating it is possible that the correlation may have been much

higher.

Qualitative analysis. The analysis of the interview data revealed some strong

consistencies in students' use of imagery and mathematical reasoning. In particular,

students who tended to rely heavily on imagery in their mathematical reasoning as fifth

graders also tended to do the same as tenth graders while students who were more

analytic in their mathematics activity at grade five also tended to analytic at grade ten. In

the paragraphs below each of the student's use of imagery and mathematics activity is

described.

Amy is perhaps the most interesting of the students interviewed. She has very

strong imagery and uses it well in her mathematics, when she chooses to do so. At both

the fifth and tenth grade levels she was not considered by her teacher to be a good math-

ematics student because she rarely performed well in classroom situations. At the fifth

grade level she scored high on the WSAT. At the tenth grade, however, she was

distracted during part of the test and her score was not high. She did however, get all but

one of the WSAT items she completed correct. At fifth grade Amy was highly creative in

her use of imagery in mathematical understanding. She did not know her multiplication

facts, but had invented an image-based procedure for multiplication which involved

repeated addition. At tenth grade she was the only student who successfully solved the

painted cube problem and did so very efficiently using her imagery and without the aid of

any diagram. She visualized the internal cube of unpainted cubes, saw that it was a 5

by 5 by 5 and then multiplied. The pattern is quite clear. Amy has powerful imagery and

is capable of high level mathematical reasoning but does not always attend to the tasks

presented.

Tiffany's use of imagery in mathematical reasoning was quite consistent in the two

interviews. She scored high on the WSAT in both the fifth and tenth grades and her

performance on the spatial tasks during the interviews was consistent with these scores.
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She also tended to use imagery and visual reasoning in doing mathematics at both the

fifth and tenth grade levels. At both these levels she was able to use decomposition/

recombination (Brown and Wheatley, in press) successfully, in the conservation of area

task in the. fifth grade interview and a trapezoidal area problem in the tenth grade. She

also used visual reasoning to solve the Mr. Short-Mr. Tall problem in the fifth grade and

the painted cube task in tenth grade, although her imagery failed to produce u successful

solution in either case. In trying the painted cube problem she attempted to construct an

image of the interior of the large cube but was unable to do so, even with the aid of a

diagram.

Karen's performance was also consistent in her reliance on analytic, rather than

visual methods. In both the fifth and tenth grades she scored high on the WSAT and her

performance on the spatial tasks indicated a use of imagery. In most tasks, however, she

chose to use analytic reasoning. In the fifth grade she used her knowledge of the

relationship between multiplication and area of a rectangle and factors to find the

dimensions before building the rectangle. She also used analytic methods in the tenth

grade tasks, but was less successful. She attempted to solve the area problem by using

geometric theorems and reasoning, but confused area and perimeter relationships.

The weakest mathematics student in the group was Laura, She scored low on the

WSAT in both fifth and tenth grade and her performance on the spatial tasks confirm this

score. Her mathematics also tends to reflect her low imagery at both levels. At both

levels she gave answers which indicated that she had no image which was helping her

mathematical reasoning. In the tenth grade interview we gave her several tasks which

had been designed for younger students, but she also attempted to do these in a fairly

mechanical fashion. In particular we gave her a geoboard area task which could have

been solved by counting squares and decomposition/recombination. Laura began this

task by counting the lines on the grid instead of the squares. She then counted every

partial square as a half square. In the tigers and cages problem she found only one

solution and thought this was the only one possible. This is also consistent with her fifth

grade performance in which she thought a mathematical task could have only one solution.

Laura's mathematics may best be described as instrumental (Skemp, 1987) at both

levels. She knows procedures and algorithms, but has little relational understanding.

In both the fifth and tenth grades Helen scored low on the WSAT but her

performance on spatial tasks during the interviews indicated her imagery was better than

her score suggested. Of the many students we have interviewed, Helen is the only one

to show this pattern. In fifth grade her mathematics showed very little use of imagery and

could be described as highly instrumental. By tenth grade, however, she did show some

relational understanding. For example, on the geoboard area and one proportional task

she used an image based solution but was unable to generate a useful image for the more
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complex tasks. It ems that Helen has been able to construct some useful images in

mathematics durinc the intervening years, although her use of imagery was still limited.

DISCUSSION

These results indicate a consistent orientation to mathematics over a five year time

span, suggesting that a student's use of imagery at one age is predictive of use later in

school. Students who used imagery extensively in fifth grade also made use of imagery

in doing mathematics at the tenth grade level while students who had made little use of

imagery in grade five showed the same pattern five years later. It is somewhat surprising

that the use of imagery is so robust. During the five years between assessments, the

students had experienced school mathematics courses in which imagery was not

encouraged and in some cases discouraged. Conventional texts and instruction

emphasize analytic and procedural methods over spatial methods. These findings

support Kruteskii's contention that the use of imagery, which is so powerful in doing

mathematics, is a deep seated characteristic of individual students.
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THE ROLE OF INDIVIDUAL RECONSTRUCTIONS OF MATHEMATICAL CONCEPTS IN DYADIC
PROBLEM-SOLVING

.01041A Vidakoviq, Duke University

Gorjana Litvinovic, University of North Carolina at Chapel Hill

The present work focuses on the role of the students' personal reconstructions of

mathematical concepts in the process of instruction in mathematics at the university level. The

assumption that each student enters the instruction/learning process as an active thinking

individual with a set of previously existing schemas--both academic and real-life, which aid her/him

in the mastery of the provided mathematical concepts--leads us to suppose that each student

constructs and employs throughout this process a number of personalized heuristic devices which

are not reduceable to a number of predefined approaches and which are productive in facilitating

communication and joint constructions between partners in problem-solving.

Our approach is based on the theoretical assumption that individual knowledge is

constructed personally, yet within and on the basis of interactional contents and contexts. This is

close to a Vygotskyan theoretical approach, with a stress on the co-construction of mental

contents.

Students were presented with a mathematical problem and asked to think about it for a

while. Then they were asked to discuss the problem with a partner who had been presented with

the same problem. The partners were chosen for having demonstrated different levels of

performance in a previous problem-solving situation. Finally, they were asked to write up their

answers to the problem individually.

The analysis focused on the differences in the individual contributions to the discussion of

the problem, on the way that the differences were negotiated between the partners during the

discussion, and on the way that the results of this negotiation were incorporated (if at all) in the

individual write-up of the problem solution.

The practical interest in this study was to support the view that the instruction of mathematics

has to take into account the fact that individual underetanding of mathematical concepts is aided by

the individual's continuously ongoing reconstructions of the problem and the concepts involved in

it, in ways which cannot necessarily be foreseen by the teacher. A consequence in terms of

preparing instructional material is, for example, the necessity to provide the flexibili 1/ for the

students' own study heuristics to be practiced.



A CATEGORY-THEORETIC DESCRIPTION OF THE MECHANISMS

UNDERLYING SHIFTS OF COGNITIVE STAGE

AND SHIFTS IN LEVELS OF GEOMETRIC

THOUGHT DEVELOPMENT

Livia P. Denis, and Jose A. Reyes

University at Albany, NY (SUNY-A)

The purpose of this paper is to reflect on the relationships

between stage theories of cognitive development and the van

Hiele theory of geonetric learning. Taking as starting points

the expositions of Piagetian theory (Davidson, 1988) and the

van Hiele theory (Hoffer, 1983) from a category-theoretic

perspective, the mechanisms of how a stage of cognitive

development is attained or how a level of geometric thought is

reached is examined in detail. The models suggested are

modified herein and thereby improved. The concepts of

morphism category, functor category, and especially of

universal element and adjoint pair (MacLane, 1971) are defined

and used in the context of the formalism introduced to model

the Piagetian and van Hiele theories. Thus an exposition of

basic category-theoretic concepts is provided (MacLane, 1988).

This, in turn, is accompanied by examples of how shifts of

level or stage are manifested in students' work and attitudes

in the learning of geometry (Denis, 1990).
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LEGO-LOGO, SPATIAL REASONING AND GIRLS

Laurie D. Edwards

University of California at Santa Cruz

This poster presents data from the first year of a three-year NSF project whose

goal is to encourage girls' interest and persistence in mathematics, science and

technology fields. A central activity of the project consists of a two-week

mathematics, science and technology summer workshop offering both Lego

Logo and hands-on construction activities in mathematics. One research

question investigated in the context of this project concerns the short-term

development of the girls' understanding of mechanism, and the question of

whether intensive activity with Lego Logo and hands-on construction and

visualization activities can lead to improvement in spatial reasoning.

The participants in the project were 48 girls from 5th, 6th, 7th and 8th

grade classes, who spent two weeks at the summer workshop (called Project

SAME, for "Science and Mathematics Equity"). During the workshop, the girls,

divided into two groups roughly by age, attended two morning sessions of

activities. One set of activities involved learning Lego Logo. Lego Logo is an

activity in which learners build devices from standard and specialized Lego

pieces, and then create programs to control the devices. Lego Logo draws on,

and may help in the development of, a range of skills, including problem-

solving, calculation, programming and planning, and spatial/visual reasoning.

In addition to the sequence of Lego Logo activities, the girls also carried

out a series of constructive mathematics activities, including paper cut-and-fold

constructions, geometric drawings and other activities. Previous research

suggests that spatial reasoning and mathematical ability are strongly

associated, and that women often perform more poorly than men on tests of

spatial ability. Other research suggests that practice can improve spatial

reasoning. One question addressed in this study is whether the activites which

the girls carried out over approximately 25 hours during the summer workshop

were effective in improving the girls' performance on a standard measure of

spatial reasoning (the Differential Aptitudes Test, Bennett, Seashore &

Wesman). In addition, a measure of the girls' understanding of mechanical

reasoning was administered.
Results from a pre-and post-test comparision on the two measures will be

presented, as well as a broader overview of the project and plans for further

analysis of videotaped data.
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TURTLE MATH: A LOGO ENVIRONMENT GROUNDED iN RESERACH

Julie Sarama Meredith
Douglas H. Clements

State University of New York at Buffalo

Research suggests that Logo can be used to develop students' geometrical

concepts and aid them in progressing to higher levels of geometric thinking. The

research corpus provides directions for designing a Logo environment fine-tuned fcr

the learning of geometry. We will describe briefly five features of Turtle Math based

on principles that have been abstracted from several research reviews.

1. Both measurement tools and the overall structure of Turtle Math (to be described

in the next section) encourage the construction of the abstract from the visual.

2. The dynamic link between the commands in the command center and the

geometry of the figure maintains close ties between representations. Any change

in the commands leads to a corresponding change in the figure, so that the

commands in the command center precisely reflect the geometry in the figure.

3. Turtle Math facilitates examination and modification of code through ease of editing

and repeating constructions and operations, along with "undoing," "stepping" and

similar functions. The rationale for such functions goes beyond simple

convenience; the tools embody the critical Piagetian concept of reversibility.

4. Turtle Math structure encourages use of procedures from the beginning. First, a

tool provided on a palette walks students through the steps of defining

procedures. Second, changes made to procedures within the teach window are

immediately reflected on the graphics screen upon exiting that window.

5. Turtle Math provides freedom within constraints in that the environment allows

students and teachers to pose and solve their own problems, encouraging

exploration and conjecture. In addition, students can solve problems at a variety

of levels. Students and teachers can enable or disable the tools through an

options menu. Students can use the enabled tools to analyze figures or to work

in a visual, empirical manner via measurement.
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THE ROLE OF CONTEXT IN MATHEMATICAL ACTIVITY

David Qlarke
Department of Science and Mathematics Education

Faculty of Education, University of Melbourne, Parkville, Victoria, Australia
Sue Helme

Department of Education
Victoria University of Technology, Footscray, Victoria, Australia

ABSTRACT

In the study which forms the basis of this paper, nine students, in two
separate interview and testing sessions, were presented with three tasks
from each of six different content areas in mathematics. The test items
presented in one session consisted of six decontextualised tasks, and the
test items presented in the other session consisted of twelve tasks which
were identical with respect to mathematical content and conceptual difficulty,
except that the mathematics for each problem was embedded in a 'real
world' context.

This study hypothesised that an individual's response to a mathematical
task is constrained or facilitated by perceptions of familiarity, interest and
difficulty. The research reported here addressed each of these attributes in
relation to success and solution method.

Students on average were no more successful with the contextualised
tasks than the decontextualised tasks, suggesting that embedding
mathematics tasks in context does not necessarily enhance performance.
However, individual differences in the way students responded to task
context need to be taken into account if the results are to be fully
appreciated. The results suggested that students who performed better on
contextualised tasks appeared to benefit from being able to understand more
precisely the requirements of the question and visualise the situation.

Introduction
The location of mathematical tasks in meaningful contexts for either instructional

or assessment purposes derives its contemporary justification from continuing

attempts to engage the student's interest, and in the recent recognition of the

importance of acknowledging and utilising the situated nature of learning (Lave,

1988). From this perspective, it is claimed that learning is facilitated where

students are able to find points of connection between their own experience and

what they are trying to understand (Belenky, Clinchy, Goldberger, & Tarule,

1986).

The use of elaborated task contexts in mathematics instruction has been

argued on at least three grounds:
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The encountering of new mathematical content in a familiar context
facilitates student understanding of the new content since individual

representations of that content can be constructed using contextual
elements already present in the learner's cognitive framework;

The utilisation of meaningful contexts facilitates student engagement

with the problem, and enhances motivation;
The learning of mathematical content in familiar contexts holds the

promise of increased transfer, application or use of that content in

other contexts within the student's immediate or anticipated

experience.
The term "meaningful" might be interpreted as "familiar"; that is, a context of

sufficient familiarity for the respondent to attach meaning to it. Alternatively,

"meaningful" might be taken as suggesting some sense of purpose. From this

second perspective, a context might be unfamiliar but sufficiently engaging for

the student to seek a resolution of the problem. In this paper, "familiar" and

"interesting" are addressed as separate aspects of the student's perception of

the problem context. It might also be inferred that unfamiliarity with a context

would be associated with the perceived difficulty of a task. Each of these task

attributes - familiarity, interest, and difficulty - warrants investigation for its

contribution to the mathematical activity stimulated by a particular task.

For our purposes, mathematical activity is taken to consist of both overt

behaviours and associated mental processes. Student overt behaviours (for

instance, the drawing of diagrams, or the completion of written calculations) may

be readily apprehended, while any corresponding cognitive process can only be

inferred, either from an analysis of explicit physical behaviour or artifact, or from

the student's spoken account of their thought processes. The aspects of

mathematical activity of interest here are the methods of problem solution and

the consequent degree of success. Student accounts provided data on context

familiarity, task interest, perceived task difficulty, and method of solution.

The research study
All of the data reported in this paper arose from a study of adult learners'

responses to contextualized and decontextualized mathematics tasks (Helme,

1994). In this study, nine students, in two separate interview and testing

sessions, were presented with three tasks from each of six different content

areas in mathematics. The test items presented in one session consisted of six
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decontextualised tasks, and the test items presented in the other session
consisted of twelve tasks which were identical with respect to mathematical

content and conceptual difficulty, except that the mathematics for each problem

was embedded in a 'real world' context. This enabled a comparison to be made

between solving a decontextualised problem and a corresponding problem

where the mathematics was embeded in context, in terms of success with the

task, student perceptions of the task (how interesting and how difficult they found

it) and methods used to solve it. Students also rated familiarity of task context. As

some contexts were rated as more familiar than others, it was possible to
ascertain the extent to which familiarity of task context was related to

performance, perceptions and the form taken by the solution. Semi-structured

interviews enabled students to describe their solution methods and comment

freely about the tasks.

Subjective responses to task context and content
An individual's response to a mathematical task will be constrained or facilitated

by perceptions of familiarity, interest and difficulty. The following discussion

addresses each of these attributes in turn.

Familiarity
In the research which forms the basis of this paper, contexts were selected with

the expectation that some would be familiar to students and some unfamiliar. For

example, in the content domain of linear equations, one task was constructed in

the context of buying food at a market, whereas another was concerned with a

leakage at a chemical plant.
Mathematical isomorphism was central to the research design, if

comparison was to be made across tasks in a given content domain. Tasks

within a content domain were amenable to solution using precisely the same

mathematical processes and calculations and numbers of the same type and

order of magnitude. This requirement constituted an operational definition of

mathematical isormorphism for the purposes of this study. Although the tasks

were mathematically isomorphic, the wording of each version of the task was

necessarily different and introduced a further source of variation, which could not

be controlled. Obvious sources of variation included the number and difficulty of

the words used in the tasks and their sentence structure.
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Respondents were asked, upon the completion of each task, to indicate
the degree of familiarity of the "situation described in the problem" on a five-point

scale, from "not at all familiar" to "extremely familiar".

I

nterest
Participants were asked, upon the completion of each task, to respond to the
question, "How interesting did you find this problem?" on a five-point scale, from

"not at all interesting" to "extremely interesting".

Difficulty
Respondents were asked, upon the completion of each task, to respond to the

question, "How easy or difficult did you fina this problem?" on a five-point scale,

from "extremely easy" to "extremely difficult".

The categorization of task completion

Success
Each task solution was assessed and rated according to a three-point scale:

Satisfactory
Complete or reasonable solution using mathematics/reasoning
appropriate to the task (2 points).

Partially satisfactory:

Incomplete solution using some appropriate mathematics/reasoning

( 1 point)

Not satisfactory:

No attempt made at solution or engaged with task with little success (0

points).

Thus students' total scores for the 18 tasks could range from 0 to 36 points, for
the decontextualised tasks from 0 to 12 points and for the contextualised tasks

from 0 to 24 points.

Scores for each student were recorded as a percentage of the total
possible score. This enabled a comparison to be made between performance on

contextualised tasks with performance on decontextualised tasks, as well as a

comparison between performance on different task contexts.
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Solution method
Examination of the existing research literature did not suggest a predetermined

scheme for categorizing solution methods. Instead, comparisons were made

between solution methods, based upon a post-hoc analysis of the data. This
was done in an attempt to identify the extent to which particular solution methods

were associated with the presence or absence of task context and variations in

task context.

Results

Task context and performance
Students on average were no more successful with the contextualised tasks than

the decontextualised tasks, suggesting that embedding mathematics tasks in
context does not necessarily enhance performance. However, individual
differences in the way students responded to task context need to be taken into

account if the results are to be fully appreciated. The results suggested that
students who performed better on contextualised tasks appeared to benefit from
being able to understand more precisely the requirements of the question and
visualise the situation. There was evidence that some students also made use of

contextual cues to assist in metacognitive processes such as checking and
revising their results. Those who were less successful at the contextualised tasks

faced prohibitive language and cultural barriers (in the case of the NESB
student) or were confused by the context and unable to extract from it the

information necessary for solving the problems. Students who did equally well

on both types of problems were generally high achieving students who
understood the content so well as to be unaffected by different task formats, or
those students who had difficulties with particular content domains and for whom

task context in these domains neither assisted nor impeded performance.
Contrary to what was expected, performance on tasks set in familiar

contexts was no better over the entire sample than that on tasks set in unfamiliar

contexts. Again, individual differences dominated the results. For some students,

performance was clearly superior on tasks located in familiar contexts, but for

others this was not the case.

An unexpected finding was the absence of a relationship between
performance and perceptions of task interest. Arguments put forward in support

of the benefits of contextualised tasks emphasise that they generate enhanced
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motivation, and therefore better performance. However this study found that
when performance on high interest tasks was compared with that for low interest

tasks, there were no significant differences. In fact, an interesting contradiction

was observed in that the task which received the highest interest rating was the

least well performed of the entire set of tasks.
Because individual differences were the most characteristic feature of

performance on the tasks, it is inappropriate and uninformative to comment

further on the group trends. Instead, the discussion which follows addresses
cases which illustrate the distinct ways in which individuals related to task
context. An explanation of the results may then be possible in terms of individual

differences or subgroups of students exhibiting similar response patterns. This

discussion will refer to the interview transcripts as well as the statistical findings.

For the purposes of this discussion, the students have been divided into three
distinct categories; those who performed better on the contextualised tasks,
those who performed better on the decontextualised tasks, and those for whom

there were no performance differences.
Within the restrictions on the length of this paper, a full discussion of the

data relating to each group is not possible. For full details of all results, the

reader is referred to He lme (1994).

Students who performed better on contextualised tasks

Emma, who obtained 67% on the decontextualised tasks and 88% on the

contextualised tasks, also rated contextualised tasks as less difficult. She also

appeared to be sensitive to context familiarity, as she performed better on

familiar contexts and rated them as less difficult than unfamiliar contexts. Her

comments on the area question revealed how useful she found task context in

solving a problem. It seems that the presence of context provided metacognitive

clues which assisted Emma in solving the problem.

Students who performed better on the decontextualised tasks

Janet obtained 58% on the decontextualised tasks and 42% on the
contextualised tasks. She was also the lowest performing student in the study.

Although she rated both types of tasks as equally difficult (average 3.8), she

commented that the decontextualised items seemed more straightforward than

the contextualised items, and, indeed, less abstract:



For the students in this category, context served to impair performance in

two distinct ways. First, the greater language demands of contextualised tasks

clearly made them more difficult for the NESB student. This effect was
compounded by unfamiliar task contexts, most likely because of the unfamiliarity

of the words as well as the situations. Second, the low-achieving student was

less successful with the contextualised tasks due to her difficulties in extracting

from the contextualised task the information relevant to its solution. This difficulty

was more evident when the context was unfamiliar. Familiar contexts gave

students access to the metacognitive cues which assisted the problem solving

process in much the same way as for the group of students discussed in the

previous section.

Students who performed equally well on contextualised and decontextualised

tasks
For the students in this category, contextual influences on performance could not

be detected. For some students the test items were not challenging enough for

different forms of task presentation to make an impact on performance, as the

content was well understood and integrated into existing conceptual frameworks.

For other students, tasks in particular content domains, rather than the presence

or absence of contextual information, were the major source of impaired

performance. The content domains in which students demonstrated difficulties

irrespective of the presence or absence of task context were area, gradient and

percentages. When students had misconceptions in a particular content domain,

the presence of familiar contextual cues was not a guarantee that such

misconceptions could be overcome.

Conclusions
That students on average were no more successful with the contextualised tasks

than the decontextualised tasks suggests that simply embedding mathematics

tasks in context does not enhance performance. However, individual differences

in student performance in relation to task context and content suggested that

students react individually and uniquely to mathematical tasks and that the

individual characteristics determining their responses need to be taken into

account. The results suggested that when students performed better on

contextualised tasks it was because they clearly understood the requirements of

the question and were able to visualise the situation. In some cases contextual
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cues enabled them to access metacognitive strategies such as checking and

revising their solutions.
There was no clear relationship between the presence or absence of

context and solution methods for all students or across all content domains.

However in the content domains of directed numbers and linear equations it was

clear that presenting the problem as an equation stimulated a formal algebraic

approach whereas a worded context task triggered an informal approach. It

appears from these results that more complex and lengthier tasks may trigger an

informal approach.
Perceptions of task interest were not systematically related to the

presence or absence of task context, nor was familiarity of task context a
significant predictor of perceptions of task interest. Thus there was no evidence

to suggest that all students engaged with or were motivated more by
contextualised tasks, or that familiar contexts were found more or less interesting

than novel contexts.
Differences in performance and ratings of difficulty were found for different

content domains, but little variation was found in perceptions of task interest and

context familiarity (for the contextualised tasks). These results suggest that some

content areas were better understood than others, and were also perceived as

less difficult.
A major outcome of this study was the recognition of individual differences

in responses to contextual factors. The idiosyncratic and often unexpected ways

in which students learn mathematics or respond to mathematical tasks, for

instance, can only be explored and understood by supplementing larger scale

studies with in-depth small scale research which focuses on particular

individuals or groups of individuals. Adoption of research paradigms which allow

greater attention to individual differences is a growing trend in mathematics

education and one which should continue.
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THE RELATIONSHIP BETWEEN PRESER VICE TEACHERS' METAPHORS
FOR MATHEMATICS LEARNING AND HABERMASIAN INTERESTS

M. Jayne Flecner
Anne Reynolds

University of Oklahoma

Abstract

This study examines the relationship between preservice teachers' metaphorical language
to describe the teachers' role in an ideal mathematics classroom and Habermasian
interests in control, understanding and emancipation. Cartoons and verbal prompts were
used to elicit metaphors and probe student thinking about the ideal mathematics
classroom. Results indicate a predominant control interest and conflict between the
socially negotiated role of the teacher as facilitator and student personal histories which
include an image of the teacher as the director of student learning. These findings
contribute to the body of literature that suggests 'newels classes do not address the prior
histories or epistemological orientations of preservice teachers.

Attempts to interpret preservice teachers' efforts to make sense of professional teacher

preparation programs often focus on beliefs, conceptions and knowledge (Pajares, 1993; Kagan, 1992;

Pajares, 1992; Fennema, 1989; Hollingsworth, 1989; Thompson, 1984) or cultural and community norms

(Cobb, Wood, Yackcl, & McNeal,'1992). Alternatively, grounded theory (Glaser & Strauss, 1967) has

been used to explore both individual and social influences afT';cting preservice teachers' attempts to

make sense of their learning experiences in the field setting (Tobin, 1990). Metaphorical language

organizes and reveals individual personal realities (Lakoff & Johnson, 1980) and is central to a grounded

theoretical approach to understanding the dynamic nature of learning to teach.

The historical relation teachers and those preparing to teach have had with their own

mathematics learning can be characterized as routine practice of procedures and skills with an emphasis

on the production of right answers (Lappan & Even, 1989; Romberg & Carpenter, 1986). Ernest (1091)

delineates a range of beliefs associated with mathematics learning from absolutist/authoritarian to social

constructivist orientations and describes how traditional personal histories are most often associated with

the authoritarian perspective.

Habermas (1971) describes three fundamental human interests (technical, practical,

emancipatory) related to the empirical-analytic, historical/hermeneutic, and critical orientations to

knowing (Grundy, 1987). A person functioning from a technical orientation is primarily interested in

controlling and managing the environment. An individual oriented by a practical interest concentrates

on clarification or understanding rather than verification of rules and social norms. The emancipatory
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interest, according IA '-{abermas, is predomine .e.C, by abhorrence of convention and commitment to

independent action, The emancipatory perspect :lie is often associated with reNction and critical analysis

of both self and societal norms. A person's ivientation lowares a particular fundamental interest

intercedes human experience and action.

Ilabermasian interest categoric.; structure i uiividual intertretations of experiences and may

affect how preservice teachers view their future teaching roles and con! truct meaning from methods

class experiences. The idealism and vision communicated during preservice teacher preparation

programs often are abandoned and prior orientation, shaped by personal histories, predominate as

students join the teaching ranks (Kagan, 1992; Kay, 1992; Bullough, lc-91; Veenman, :1984).

We need to regard the views we hold about tL aching not as idiosyncratic preferences,

but rather as the product of deeply entrenched cultural norms of which we may not

even be aware.... Teaching becomes less of an 'solated set of technical procedures and

more of a historical expression of shaped values about what is considered to be

important about the nature of the educative act (Smyth, 1992, pp. 298-299).

The question arises: Arc teacher preparation programs in conflict with the epistemological needs of

preservice students?

This study examines the relationship among preservice teachers' metaphorical language to

describe the teacher's role in an ideal mathematics classroom and Habermasian interest categories.

Guiding questions for this study are:

1. What are the metaphors for leaching mathematics that preservice teachers express?

2. What is the relationship between these metaphors and Habermasian interests?

Description of the- Investigation

Students participating in this project were in their last semester before student teaching.

Although most were in the four-year transitional teacher preparation program, all had had extensive

experiences in classrooms as part of the developmental field experience component of the newly adopted

5-year program. Approximately two-thirds of the students were traditional students under the age of

25 and all but one were women. Prior to their methods block, consisting of mathematics (4-8), language

arts, social studies, and reading methods classes, most had taken a primary grades (PK-3) mathematics

methods course and three mathematics content courses. The knowledge base of the teacher preparation

program in which they were enrolled includes a commitment to philosophical approaches to teaching

and learning consistent with the various branches of constructivism (Prawat, 1993).
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Metaphors describing the role of the mathematics teacher were elicited from 63 preservice

elementary education and early childhood majors in two intermediate/middle school mathematics

methods classes. Students were asked on the first night of class to "Describe what teaching is." Later

during the same class, students responded to the 29-item Attitude Instrument for Mathematics and

Applied Technology-Version II (AIM-AT-II) (Fleener, 1994a) which was used to determine

Habermasian interest orientations for each student. On the second night of class, students were shown

6 non-human Far Side cartoons with the captions removed and asked to pick and describe the one that

best illustrates an ideal mathematics classroom. They were then asked to describe which animal was

the teacher and what the role of the teacher was in that classroom. During the fourth week, students

in one class were given one of the six cartoons and asked to describe the mathematics lesson or activity

depicted. These data were used to determine consistency of earlier definitions and descriptions of the

ideal mathematics classroom and to compare metaphors elicited by later prompts with earlier language

used to describe the role of the teacher.

Student responses to visual and verbal prompts were examined to determine the metaphors used

to describe the role of teachers. Students were then categorized into Habermasian interest categories

and metaphors were compared across Habermasian orientations. Prior research suggested response

patterns to the AIM-AT-II are related to control, hermeneutic, and emancipatory Habermasian

perspectives (Fleener, 1994b). Teachers (Fleener, 1994b) and preservice teachers (Fleener, 1994c) were

found to be split on whether mastery of skills or concepts was necessary before students were allowed

to use the calculator. Analyses revealed MASTERY = YES teachers (i.e. teachers who believed

conceptual mastery should be achieved before calculators are used) had stronger interests in control

than MASTERY = NO teachers who disagreed that conceptual mastery should occur before calculators

are introduced and MASTERY = MAYBE teachers whose position on the mastery issue was unclear.

Furthermore, the MASTERY = NO group displayed a stronger interest in hermeneutic and emancipatory

matters than the MASTERY = YES group. Preservice teachers in this study were categorized into these

same mastery groups based on responses to the AIM-AT-II survey to indicate Habermasian orientations.

Teaching metaphors of the three groups of preservic- teachers were compared to address the second

research question.
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Results and Discussion

The social influence of constructivism as expressed through prior methods classes was apparent

as students chose the 'active learning' visual prompt as most indicative of the ideal mathematics

classroom. Initial descriptions of the role of the teacher revealed control, hermeneutical and

emancipatory interests as typical metaphors "Teacher as Guide," "Teacher as Facilitator," "Teacher as

Manager," "Teacher as Role Model" and "Teacher as Encourager" were expressed. Although "Teacher

as Facilitator" was a metaphor used by many of the participants in this study to describe the role of the

teacher and the visual prompt selected as the most indicative of the ideal mathematics classroom,

examination of written responses to visual and verbal prompts revealed a move towards more controlling

language as students were asked to delve deeper into what the teacher was doing with the students in

the presented cartoon and to elaborate on their thinking about the role of the teacher. The initial use

of the facilitator metaphor and the subsequent shift to more traditional ways of viewing the role of the

teacher further indicate the influence of the social setting of methods classes encouraging the facilitative

role and the conflict between the idealism of the met':

experiences of the preservice teachers.

Mastery categorization of participants defined three groups of preservice teachers:

MASTERY= YES, MASTERY= MAYBE, and MASTERY =NO. Prior research (Flecner, 1994b)

indicates these groupings correspond to Habermasian interests with the MASTERY = YES group

exhibiting a stronger control orientation and the MASTERY= MAYBE and MASTERY = NO groups

expressing more hermeneutic and emancipatory perspectives. There were 43 participants categorized

in the MASTERY = YES category, 12 in the MASTERY = MAYBE group, and 8 in the

MASTERY= NO grouping. Twenty seven of the 43 MASTERY= YES preservice students used

metaphors depicting the role of the teacher is to instruct, teach, impart or convey knowledge. Ten of

the MASTERY = YES students characterized the role of the teacher to help students understand

mathematics content; 4 felt the teacher should make mathematics fun, and 2 suggested the role of the

teacher was to make a difference in the lives of their children. These findings are consistent with prior

research which suggests MASTERY= YES teachers have a fundamental interest in controlling the

learning environment, including controlling the content of what is learned.

Of the 12 MASTERY = MAYBE students, 8 indicated the role of the teacher was to guide

;lass and the underlying beliefs and

250 261



students in their learning of the curriculum or help students obtain their personal goals and function in

society. Although guiding student learning indicates a control orientation (Fry, in press), these students

did reveal a more student oriented focus than did the MASTERY = YES group by expressing concern

with student personal fulfillment.

The MASTERY= NO group was similar to the MASTERY = MAYBE group with the majority

of students indicating the role of the teacher is to guide student learning, help students fulfill their goals,

and create an atmosphere where students could pursue and enjoy learning. Only 2 of the

MASTERY =NO teachers revealed a strong controlling interest by describing the role of the teacher

as the director or instructional leader of learning.

Implications

The influence of prior experience was evident as students' controlling metaphors expressed their

personal histories with and, in many cases, fears about mathematics learning. Initial responses to visual

and verbal prompts elicited the socially negotiated view of the "Teacher as Facilitator." Continued

probing of students interpretations of the Far Sidc cartoons and verbal prompts, however, revealed the

conflict most of the students felt between viewing teachers as facilitators and their concern over

controlling the classroom and the curriculum. This conflict was especially apparent for the

MASTERY = YES group who expressed a majority interest in control. Although students in the other

two groups expressed more hermeneutic or emancipatory Habermasian perspectives, they too exhibited

controlling interests. These results suggest the mathematics content and methods classrooms do not

address the epistemological, needs of prescrvice teachers. Even though the methods classes in which

these students were enrolled included opportunities for reflection and active learning, it may be students

need to be more actively engaged in inquiry based content and methods classes to construct meaning

for, rather than merely adopt the language of, inquiry based learning.

Further investigations based on this research need to address the role reflection on personal

metaphors plays in encouraging prescrvice teachers toward a more emancipatory or critical approach

to their teacher education experiences. Bridging the epistemological gap between empiricism and critical

approaches to teaching is necessary before prescrvice teachers can be transformed through the methods

class negotiations. Critical awareness is elemental to change (Freire, 1973).
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WHEN A SOLUTION TO A MATHEMATICAL PROBLEM BECOMES AN

ACCEPTABLE PROOF

Ewa Prus-Wisniowska

Syracuse University

Mathematical proof is considered as an indispensable element of

mathematical practice. Proving and refuting conjectures are continuously

interwoven. Furthermore, the basis for the new discoveries and applications are

often not the theorems themselves but the fruitfulness of the ideas included in

these processes.

In a traditional calculus classroom, problems are clearly defined and what

is to be proven is explicitly stated. Then the formal proof is either omitted as too

tedious or its logical necessity is conveyed by an instructor. Students' lack of

awareness of the need to support mathematical facts by any proof and their

logical immaturity is well documented by researchers. This study investigated

whether it is possible to go around students' pragmatism and have them not only

produce answers to a problem but also reason about an argument they made.

A clinical case study of second semester college calculus students will be

reported. Students solved the calculus problems in small groups, were obliged to

offer additional explanations when others did not understand or disagreed, and

finally, defended their solutions against the critique of the researcher. In their

attempts to convince different discussants of the appropriateness of the solution,

varieties of ideas and modes of justifications were evoked.
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AN INVESTIGATION INTO THE DEVELOPMENT OF STUDENT
UNDERSTANDING OF THE GRAPHS OF POLYNOMIAL FUNCTIONS
OF DEGREE GREATER THAN TWO: RESULTS AND IMPLICATIONS

Judith E. Curran
University of New Hampshire

Through the use of clinical interviews, this study investigated the
development of student understanding with respect to the graphs of
polynomial functions of degree greater than two. Of primary interest is
information relating to how the students' ability to interpret the graphs of
polynomial functions of degree greater than two depends and builds on
their understandings of the graphs of linear and quadratic functions.
Teaching episodes were developed in an attempt to enhance connections
between classes of polynomial functions and to enrich the students'
understandings of the graphs. In this paper, excerpts of responses from an
11th grade student, Mark, are analyzed.

Introduction and Rationale

The typical path of instruction in high school algebra courses for the

various representations of functions has been from algebraic expression, to

ordered pairs, to graphs (Philipp, Martin, & Richgels, 1993). The Curriculum

and Evaluation Standards for School Mathematics (NCTM, 1989, p.148-153)

imply that, due to the availability of technology in the classroom, the emphasis

of instruction should be on the graphs of functions rather than on the learning of

algebraic algorithms. This shift in emphasis is supported by the belief of many

mathematics educators that graphical representations will elucidate the function

concept and make it easier to learn for most students (Romberg, Fennema, &

Carpenter, 1993).

With these changes, it is appropriate for new research that investigates

how students' understanding of graphs develop. This paper reports a small

piece of a larger study (Spring, 1994), that was based on the hypothesis that an

adequate understanding of the graphs of polynomial functions requires that the

students develop some sense about the effect of the degree of a polynomial

function on its graph, as well as an understanding of the relationship between

the factors of the algebraic representation of the polynomial function and its

graph. These associations are "assumed" background knowledge for calculus
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and necessary for such common applications as finding the area between the x-

axis and a curve given by a polynomial function.

The theoretical framework for the proposed study is a constructivist

position on conceptual change. This position infers that the process of

conceptual change is affected by the active participation of the learner in the

construction of his or her own knowledge and can be facilitated or hindered by

the learner's beliefs and motivation, as well as contextual and situational factors

(Pintrich, Marx, & Boyle, 1993).

Method

This study took place within an upper level Algebra II class at a public

high school in northern New England. The traditional sequence of instruction,

and the sequence that was adopted in this class, was from linear functions to

quadratic functions to polynomial functions of degree greater than two. Six

students from the class volunteered to participate in the study. Personal

interactions with these students occurred in three phases: 1) clinical interviews,

2) teaching episodes, 3) an evaluation of the teaching episodes by repeating

the clinical interviews.

The clinical interviews: Clinical interviews were used in an attempt

to identify each students' previous mathematics background, their attitudes and

beliefs about mathematics, and their attitudes, beliefs, and understanding about

elementary functions and graphing. These interviews were also used to

explore the students' thought patterns and investigate how and to what extent

their understanding of the graphs of polynomial functions was developing. The

interviews and relevant classroom sessions were videotaped.

Later clinical interviews focused on student understanding of the graphs

of cubic polynomial functions with 3 real roots. Tasks focused on both pointwise

and global understandings. They included describing a point's location on the
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curve, and addressing whether the location of the point inferred anything about

the graph's algebraic representation.

The teaching episodes: As a result of these clinical interviews, it was

decided that the purpose of the leaching episodes" (Steffe, 1984) would be to

experiment with how building polynomials by taking products of linear functions

can, with the aid of technology, enrich and extend student understanding of the

graphs of polynomial functions. My hypothesis was that allowing the students to

build polynomial functions by taking products of linear functions would make the

connections between the classes of polynomial functions more salient.

Furthermore, the use of software that allowed the student to see the algebraic

representation alongside the graphical representation would perhaps foster the

formation of these connections.

Data Analysis

The data included videotapes of class sessions, student and teacher

interviews, and teaching episodes, as well as student class work, quizzes, and

tests. The students were asked to write some reflections in a journal following

each clinical interview and teaching episode. For this paper, excerpts of

responses that were made during the clinical interviews and the teaching

episodes by one student, Mark, are analyzed.

Results

Initial reviews of the clinical interview tapes indicated that, upon

completion of a unit on polynomial functions in Algebra II, Mark, a B student,

failed to connect the x-intercepts as seen on the graph to the factors of the

algebraic representation of the polynomial function. The class had used

synthetic division to find the roots of polynomial functions, and had factored and

graphed polynomials of degree greater than two using the Factor Theorem.

When shown the graph in Figure (a), Mark determined that the equation was

"something like x3 +x2 + x + 1" and then tried to make sense out of the attributes
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of the graph by reaching back to his knowledge of quadratic functions. For

example, when asked if the turning points (Mark referred to them as vertices)

gave any information about the equation, Mark replied, "Um..you know, if it was

like a parabola..you could plug in the..Oh, yeah, let me see..yeah, you could

plug in the numbers the..a(x- h)2 +k..you could plug them in there and that would

help you get the equation..".

When asked if the x-intercepts had anything to do with the equation of the

cubic, he replied, "I'll guess that those are like..I'll take a guess and say that's

the..um..coefficient of the x terms..but I don't know...that's a guess."

Mark did understand that substituting these values for x in the equation

caused f(x) to equal 0. His answers suggested, however, that the link between

the roots and the factors of the polynomial was not salient. When asked for the

factors of the polynomial, he gave the x-coordinates of the x-intercepts.

Concerning the y- intercept, he said, "That is where I got the +1..even

though it's not a parabola or a swivel if you add 1 it moves up or down...it moves

up one." This point on the graph seemed to have the most clarity for him,

perhaps because he had done so much work with linear equations and the form

y=mx+b.

Figure a Figure b Figure c

After turning his attention to the graph of a quadratic function, Mark was

asked if the x-intercepts would help him find the equation of the graph (Fig. b).

Mark responded, "Would it help me find it?.. no." The only point Mark thought

would help was the vertex, (h,k), which could be "plugged" into the form y=a(x-

h)2+k. Even though a lot of work had been done with factoring quadratic
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expressions, and finding the roots using the quadratic formula, the only relation

that the x-intercepts had to the equation was that it made the function value 0.

Mark was then shown the graph of the line in Figure (c) and asked

whether the x-intercept had anything to do with the equation of the line. He

answered, "I forget if they have factors or not. I think so..I think that's a factor of

it..but, I wouldn't know how to get it [the equation]." He tried to link this linear

function with what we had just done with quadratic and cubic functions, but was

not sure how to do it. Mark was able to get the equation of the line, however, by

determining the y-intercept and the slope and "plugging" these values into the

form y =mx +b.

In summary, Mark's responses in these clinical interviews indicated that

his methods for finding the equations of linear and quadratic functions were

strictly mechanical. This result was not surprising since this was the emphasis

in class instruction and homework.

The "teaching episode" went beyond observing Mark to intentionally

intervening in his knowledge construction. Using The Function Supposer:

Explorations in Algebra (Educational Development Center, 1990), Mark was

asked to enter the equations for two linear functions, which were graphed in

boxes on the same screen (Fig. d). When asked if he knew what the graph of

the product of these two linear expressions would look like, Mark multiplied the

linear expressions in his head. The result was a quadratic expression and

Figure d
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therefore, he said, the graph would be a parabola. He also determined that the

coefficient of the x2 term was -1/2 and that meant that the parabola was wider

and would open down. After seeing the graph of the product on the same axes

(Fig. e), he noted that the parabola "had moved sideways" and was not

centered on the y-axis, and that the vertex of the parabola was near the

intersection of the two lines. Not until his attention was directed to the x-axis

and the intercepts did he note that the parabola had the same x-intercepts as

the lines.

JC: ..and how does that correspond to the linear graphs?..the linear
expressions?..
MARK: Ohl.. Yeah, that's right where they cross... Huh...Huh...

The fact that the graphs cross the x-axis at the same point was new to

Mark as evidenced by his surprise. He continued to transfer this idea to future

tasks of this sort, showing he understood that the parabola would have the

same x-intercepts as its linear factors.

In order to evaluate his understanding, he was shown the graph of the

cubic polynomial that was used in the clinical interviews (Fig. a) and again

asked if the x-intercepts had anything to do with the equation.

MARK: you take that [the x-intercept] and you put x..wait..what is it..I don't
know..1.6?..X-1.8 and multiply it by these to get the equation.
JC: Multiply it by those..what do you mean?
MARK: Multiply it by whatever that is .. I think that's 1/2 and 1 and 1 /2..so,
x+1/2 and..
JC: OK, what are those things called?
MARK: Factors? x-intercepts, too..

...and when looking at the parabola (Fig. b) again:

JC: So, if I asked you to find the equation of the parabola..what would be
your way of finding it?
MARK: it looks like 1.5...x-1.5 and x+1.5 and multiply them out.

(We discussed after this that the actual equation of the parabola may be this

product multiplied by a "stretch factor ".)
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Mark seemed to recognize at this point that the x-intercepts did have

something to do with the equation. He wrote in his journal that these ideas

were new to him and very interesting. As seen by his responses, though, his

understanding of the terminology (factor, x-intercepts) was still blurred.

Conclusions

Due to the emphasis of his instruction, Mark had viewed classes of

polynomial functions as independent from each other. The algebraic

representation, y.a(x-h)2+k, used when studying the graph of a parabola did

not extend to the other classes of polynomial functions. The results seem to

indicate, however, that the method of building polynomials from linear

expressions used in the teaching episodes, did foster the connections between

these classes of polynomial functions.

It is possible that as the data from this study continues to be analyzed the

results may provide some direction relative to the creation of classroom

modules and/or suggestions for curriculum change with respect to the study of

the graphs of polynomial functions.
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A MODELING APPROACH TO CONSTRUCTING TRIGONOMETRIC
FUNCTIONS

Helen M. Doerr
Cornell University

This paper presents an approach to mathematical modeling that integrates
physical experimentation, computer simulation, and multi-representational
analytic tools. Using this approach, a curriculum unit was designed to develop
and explore the trigonometric functions through the relationship between uniform
circular motion and its vertical and horizontal components. In this paper, the
investigation undertaken by a small group of students in an integrated
mathematics and physics classroom is reported. In developing a model for
uniform circular motion, the students linked the trigonometric relationships to the
concepts of horizontal and vertical distance. Th59 results of this classroom study
suggest that this modeling approach is productive and empowering for students.

Introduction

Modeling, simulation and discrete mathematics have all been identified by

the National Council of Teachers of Mathematics (1989), the Mathematical

Sciences Education Board (1990) and other professional mathematics education

organizations as important areas for secondary school study. However, there is

still a need for a better understanding of the processes involved in modeling and

how these processes might be most effectively used to improve students'

problem-solving skills and content knowledge. The modeling process is typically

described as having several components: understanding the particular

phenomena to be modeled; defining the context and constraints; identifying and

explicitly defining the relationships between the key variables; translating thou e

relationships to an appropriate computer implementation; and analyzing and

interpreting the results (Edwards & Hansom, 1989).

The modeling process is thus distinguished in three ways from the typical

problem-solving activity in the mathematics classroom today. First, the building

of computer models by students forces them to make explicit their own

understandings and to explore the consequences of those understandings.

Second, the kinds of mathematical representations that are possible with

computer-based tools extend far beyond algebraic equations to include tables,

graphs, calculator algorithms, flow and control diagrams and animations. Third,
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the iterative nature of the modeling process provides the opportunity for

approximate solutions which are refined through analysis and evaluation by the

problem solver. This iterative process includes both reflection on the part of the

individual ("what do I think") and the communication of that understanding among

peers ("what do others think"). This process of iteration is not necessarily linear.

But rather, as Bell (1993) argues, students as modelers need to spend time in

each of several activities or "nodes": confronting and defining the problem,

deciding on a model and operating, evaluating and interpreting, and gathering

data and information.

Description of the Study

In this study, students engaged in a modeling process which integrates

three component activities: the action of building a model from physical

phenomena, the use of simulation, and the analysis and validation of potential

solutions using multi-representational tools. In particular, we examined how and

to what extent these components of the modeling process can lead to the

improvement of student skills in solving mathematical problems in the content

areas of trigonometry. This paper addresses the investigation of the

trigonometric functions, preliminary to a larger research project on an integrated

modeling approach for building student understanding of the concepts of force

and vectors and for enhancing student problem-solving skills.

Design of the Curricular Unit The overall curricular unit was designed around

three activities: (1) the gathering of data from a physical experiment, (2) the

development and exploration of a computer simulation, and (3) the mathematical

(algebraic, graphical, and tabular) analysis of the data. The second and third

component activities were supported through Interactive Physics© (Baszucki,

1992) and Function Probe() (Confrey, 1992a), respectively. This approach to the

design of the unit builds on earlier work of the Mathematics Education Research

Group at Cornell University (Noble, Fler lage, & Confrey, 1993). Critical to the

overall philosophy of the researcher and the high school teachers, this unit was
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designed to include extensive student discussion and reflection, collaborative

work, small and large group tasks, and individual assignments.

Setting, Data Sources and Analysis The setting for this study was an alternative

school within a public school system in a small city. The classrooms within the

school are an open, flexible environment where small group work is common and

the expression of student ideas is encouraged and nurtured. This study took

place in an integrated algebra, trigonometry, and physics class with 17 students

in grades 9 through 12, who had elected to take the course. Seven computers

were available for student use. The class met for a double period of 1.5 hours for

four days per week. The class was team taught by two experienced mathematics

and physics teachers, who were familiar with computer technology and the

particular software. The teachers had been trained and supported in the use of

the Function Probe software by the Mathematics Education Research Group at

Cornell. One of the most important aspects of the classroom was the role that

the teachers took as guides and facilitators for student inquiry. Students were

consistently encouraged to explore their own ideas and to make sense of

physical phenomena in a context of interactions with their small group, the entire

class and their teachers. The students were familiar with Function Probe from

earlier course work; the simulation environment, Interactive Physics, was

introduced with this unit.

The class was divided into five small groups of 3-4 students. The small

groups provided a setting within which to analyze and observe how the students

went about interpreting the questions, generating and negotiating their

conjectures, devising their strategies for analyzing the data, confirming the sense

of one or more conjectures, and using the tools and their data. Each class

session of this unit was video-taped, including both the whole class discussion

and the small group interactions. Written work and computer work done by the

group were collected for analysis. Extensive field notes were taken by the
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researcher during the class sessions. The video-tapes of class sessions were

reviewed and selected portions were transcribed for more detailed analysis. In

this paper, the results of the analysis of the approach to the investigation taken

by one small group are presented.

Description of the Currtular Unit The unit began with a simple physical

experiment: the rotating motion of a wheel with a fixed hub. A bicycle wheel was

mounted on the edge of a table with a sheet of poster board behind it marking

various angles from zero through 360 degrees. As the wheel rotated through 360

degrees, the students were asked to describe the relationship between the height

above or below the table for a fixed point on the wheel and the angle of rotation.

This experiment allowed the students to extend the definition of the sine, cosine

and tangent functions to include angles greater than 90 degrees and to develop a

graphical representation of the functions that was grounded in the circular motion

of the bicycle wheel.

The students then applied these extended definitions of the trigonometric

functions to the analysis of a Ferris wheel ride (Confrey, 1992b) using the multi-

representational analytic tool, Function Probe. The students created tables,

graphs and equations to describe the motion of a Ferris wheel of varying

diameters, at different speeds, and from different starting positions. Finally, the

students created a simulation of a Ferris wheel ride using the tools and objects of

Interactive Physics. They used the meters in the simulation environment to

"measure- the vertical distance above the hub of the wheel of a point on the

wheel. This simulation "data" was then brought into the analytic environment for

comparison to the earlier analysis. Since this was the first use of the simulation

environment, the objectives of this use of the environment were to familiarize the

students with the tools and actions in the environment and to confirm that the

results or data from a simulation made sense to the students in terms of the

physical phenomena under study.
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Results

The unit began with measuring the vertical and horizontal distance

between a point on the rim of a bicycle wheel mounted on the edge of a table and

the hub of the wheel. In a whole class demonstration, the students created a

table of values for angles varying from zero through 180 degrees, recording the

vertical distance, the horizontal distance and the radius. This led to a discussion

of measuring the horizontal distance as negative for angles between 90 and 180

degrees. The students agreed that the vertical distance should remain positive,

but several students questioned whether the measurement of the radius should

be considered negative as well. The class agreed to accept as a convention that

the radius would remain positive throughout the 360 degree rotation. The

students extended their data table to angles between 180 and 360 degrees

through an argument from symmetry and then calculated and graphed the ratios

for the sine, cosine and tangent functions.

The students then investigated the Ferris Whael problem (Confrey, 1992b)

as follows: Suppose a Ferris wheel with an 80 foot diameter makes one

revolution every 24 seconds in a counterclockwise direction. The Ferris wheel is

built so that the lowest seat on the wheel is 10 feet off the ground. The boarding

platform for the Ferris wheel is located at a height that it is exactly level with the

hub of the Ferris wheel. You take a seat level with the hub as the ride begins.

The students were asked to create a table and a graph to represent the

relationship between the time and the height above or below the platform for at

least two revolutions of the Ferris wheel. The small group of students, which was

the focus of this study unit, began with a diagram of the wheel and identified the

critical relationship between the time and the angle of revolution at a 45 degrees.

For this particular angle, they used the sine function to calculate the height above

the hub at three seconds or 45 degrees. Arguing from symmetry, they then

completed a table toat had time from zero to 72 seconds, in increments of three

econds, and the height above or below the platform. They sent these table
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values to the graph window of Function Probe and then puzzled over how they

could create an equation for this, recognizing that the values of their table did not

increase and decrease linearly. One of the students suggested using the sine

function and from there the students encountered the problem of how to reconcile

the use of time and angle as an argument to the sine function. They reasoned

that they could calculate the angle by multiplying the time by 15 and confirmed

this argument for the 45 degree and 90 degree angles. The teacher encouraged

them to make a column for degrees that would correspond to their column for

time, which they did. However, throughout the remainder of the problem, the

students used time and multiples of time to generate equations and graphs that

corresponded to the event of the Ferris wheel traveling twice as fast and half as

fast as the initial rotation. They used both vertical and horizontal "stretches" of

the graph of y=sinx to confirm the correspondence between their graph from their

calculated values and the graph of y=sinx.

The last activity of this unit consisted of creating a simulation of the motion

of the Ferris wheel using the tools of Interactive Physics. This activity was

intended to introduce the students to the simulation environment so that they

would be familiar with it for later units in the overall research project and to verify

that the results of simulation "experiments" corresponded in some way to the

results that they were able to create from other types of analysis. The students

created a simple mass on a rope, with an initial vertical velocity, to simulate the

motion of a Ferris wheel. Using the built-in meters of the software, they observed

the elapsed time and that the graph of the vertical distance above the center of

rotation was a sine curve. They did not systematically confirm the details of

these graphs for the range of situations that had bean created in the analytic

environment. The students did, however, move the 'data" from the simulation for

the initial conditions of the first ride into the analytic environment and confirm that

these "results* were the same as their earlier analysis.
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Conclusions

The bicycle wheel demonstration provided the students with an initial

experience which allowed them to extend the sine, cosine and tangent functions

to include angles greater than 90 degrees. The analytic tools provided the

flexibility of tables and graphs, enabling the group to define both equations and

related graphs that described the relationship between the angular motion of the

wheel and the vertical distance above the hub. The students were able to move

the data from their simulation experiments into the analytic environment for

analysis. The use of a physical experiment, computer simulation, and analytic

tools enabled the students to convince themselves through multiple and varied

approaches of the validity of these relationships. This study provides evidence

that an integrated approach to modeling is both productive and empowering for

students.
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STUDENTS' CONCEPTIONS OF FUNCTIONS IN A
COMPUTER-RICH PROBLEM SOLVING ENVIRONMENT

Brian R. O'Callaghan David Kirshner
Southeastern Louisiana University Louisiana State University

This report presents a description of certain aspects of a research project which
examined the effects of the Computer-Intensive Algebra curriculum on students' understanding
of the function concept. The paper begins with a overview of the experiment and a brief
summary of the results. It then focuses on one facet of the investigation, namely, the
theoretical framework delineating a conceptual knowledge of functions. In particular, the
problematic of the reification construct is discussed at that time.

In response to calls for reform in the teaching and learning of mathematics (NCTM,

1989; NRC 1989), an innovative curriculum, Computer-Intensive Algebra (CIA), was

developed as an alternative approach to traditional algebra (TA). CIA is a function oriented

curriculum characterized by (a) a problem solving approach based on the modelling of

realistic situations, (b) an emphasis on conceptual knowledge, and (c) the extensive use of

technology. Whereas previous research (Boers-van Oosterum, 1990; Matras, 1988) had

shown the beneficial effects of CIA on students' problem solving abilities and on their

understanding of variables, the project described here (O'Callaghan, in press) was aimed at

examining the curriculum's effects on the students' understanding of functions.

Overview of Experiment

The experiment was conducted at Southeastern Louisiana University during the spring

semester, 1993. The CIA curriculum was implemented in one section of the College Algebra

course, and this class was then compared to the TA classes. Overall, there were 802 students

included in the study; but the primary focus was on the experimental class (CIA) and two

control classes (TA1 & TA2). Both quantitative and qualitative data were collected from

these groups in an effort to probe their conceptions of functions as thoroughly as possible.

Many instruments were used in the quantitative portion of the experiment, most

notably, a pretest and posttest on functions. These tests were designed by the researcher

based on the theoretical model for the function concept as described later in this report.

Other important instruments were the departmental final examination and two attitude

measures, which were also analyzed for the possibility of differential effects resulting from

the two curricula. The qualitative aspects of the project consisted of two sets of interviews

conducted with students from the CIA and TA classes.

271 2



Summary of Results

Both the quantitative and qualitative analyses revealed that the CIA students were

better than their TA counterparts in every competency described in the function model except

for reifying. The indications for that component were that this level of abstraction was

beyond the reach of both groups. Furthermore, the interview data suggested that the two

groups were forming very different conceptions about functions. While the TA subjects

thought of functions as formulas or equations, the CIA students described them as dependency

relations involving input and output variables. Also, those in the CIA group were more

inclined to use functions in their problem solving attempts; and they had clearer conceptions

of domain and range.

Relevant to the affective domain, the CIA subjects showed significant improvements

in their overall attitudes toward mathematics and significance decreases in their anxiety in

regard to the subject. They also expressed the opinions that their class in general, and

functions in particular, were important and relevant to their lives both in and out of the

classroom.

Theoretical Framework

The basic foundation for this research was the theoretical framework proposed to

describe a conceptual knowledge of functions. It is a synthesis of the ideas of the researcher

and other mathematics educators (Fey, 1992; Kaput, 1989; NCTM, 1989; & others) as

expressed in the literature on this tupic. Comprised of a theoretical basis and a function

model, the framework represents this author's attempt to impose some structure and

organization onto the complex web of meanings that is the function concept.

Theory

Thompson (1985) says that the purpose of education is to develop intelligence through

problem solving. He further states that the essential feature in the construction of

mathematical knowledge is the creation of relationships, and creating relationships is the

hallmark of problem solving in mathematics. Since functions are the mathematical tools used

to describe the relationships between variable quantities, they are at thT. core of the

mathematical problem solving process.

Kaput (1989) describes four sources of meaning in mathematics, which he divides into

two complementary categories. The first category is called referential extension and is

accomplished via (a) translations between mathematical representation systems and (b)
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translations between mathematical and non-mathematical systems, such as physical systems

or natural languages. The second category, named consolidation, consists of (a) pattern and

syntax learning through transforming and operating within a representation system and (b)

building conceptual entities through reifying actions and procedures.

Another nportant source for the proposed function model is the Curriculum and

Evaluation Standards for School Mathematics (NCTM, 1989). According to the NCTM, an

understanding of the function concept involves the ability to (a) model real world phenomena

with functions, (b) represent and analyze relationships using equations, tables, and graphs,

(c) translate between these three different representations, and (d) understand operations on

and properties and behavior of certain families of functions.

Function Model

Firmly rooted in a problem solving environment, the proposed function model is

formulated in terms of the uses of functions to solve problems. The rationale for this

approach is the nearly universal agreement that problem solving should be the focus of school

mathematics and that functions are the primary tools in that process. The model consists of

four component competencies as described in the following paragraphs.

Modelling. As shown in Figure 1, the process of mathematical problem solving

involves a transition from a problem situation to a mathematical representation of that

situation. This process entails the use of variables and functions to form an abstract

representation of the quantitative relationships in that situation (Fey, 1992). The ability to

represent a problem situation using functions is the first component of an understanding of

the function concept and will be referred to as modelling.

Interpreting

Figure 1. Translations between the real world and algebraic representation.
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This modelling component can be divided into a number of subcomponents depending

on the representation system used to model the situation. The three most commonly used

representations for functions are equations, tables, and graphs. For example, a task could

require students to write an equation, compute pairs of values, or sketch a graph

corresponding to a particular situation.

Interpreting. The reverse procedure is the interpretation of functions (Fey, 1992) in

their different representations in terms of real-life applications (see Figure 1). This ability,

labelled interpreting, will be considered the second component of a conceptual knowledge of

functions. This component can also be analyzed at a finer grain size and partitioned into

subcomponents. These would again correspond to each of the three main representation

systems for functions.

Translating. As mentioned previously, the mathematical model may be represented

in various ways within the algebraic representation system. The three forms that are most

commonly used are (a) symbolic - equations or formulas, (b) tabular pairs of values for the

related variables, and (c) graphical (see Figure 2). These have been called the three core

representation systems (Kaput, 1989). Verstappen (1982) refers to them as the algebraic,

arithmetic, and geometric categories for recording functional relations using mathematical

language. The ability to move from one representation of a function to another, or to

translate, is the third component in the function model.

Figure 2. Three core representation systems for functions.
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Reifying. The final component in the theoretical model for functions is reifying.

Reification can be defined as the creation of a mental object out of what was initially

perceived as a process or procedure. This mathematical object is then seen as a single entity

that possesses certain properties and that can be operated on by other higher-level processes,

such as transformations or composition.

Reification has been described as the final stage in the acquisition of the function

concept (Thomas, 1975) and as one of the most essential steps in learning mathematics

(Dreyfus, Artigue, Eisenberg, Tall, & Wheeler, 1990; Thompson, 1985). Based on Piaget's

notion of "reflective abstraction," it has been said to represent the ultimate goal in the

instruction and learning of functions (Kaput, 1989; Kieran, 1990). Yet, reifying is a very

difficult process; and very few students ever achieve this conceptualization of functions

(Sfard, 1989).

Evaluation of Model

With some qualifications, the proposed theoretical framework for the function concept

worked quite well in the study. The model made it possible to organize and operationalize

this abstract and complex concept. It provided a well organized and clearly defined structure

for the research questions of the study, for the instruments used to investigate those questions,

and for the analyses of the results from those instruments.

The individual components of modelling, interpreting, and translating were all rather

straight-forward to operationalize and assess. However, there were some areas of overlap

and ambiguity even for these components. For example, the processes of modelling and

interpreting probably operate more in a cyclical pattern than in isolation within a problem.

Thus, a question that was intended to focus on the modelling component necessarily involved

a certain amount of proficiency in interpreting. Relevant to the translating component, there

was a potential problem involving questions aimed at probing the students' ability to translate

from an equation to a graph. In response to these questions, a student might actually perform

two other translations, first from equation to table and then from table to graph.

Reifying was unquestionably the most troublesome component for the researcher as

well as the students. Its definition leads quite naturally to the operationalization used for

reifying in this experiment. The probes for this component investigated precisely the two

characteristics described, namely, the students' knowledge of the properties of certain families

of functions and their ability to perform operations on them.



The problematic encountered here was that these probes were not sensitive to the

nuances of the reification construct. A knowledge of the properties of functions, even when

expressed in terms of their various representational systems, was not a convincing indicator

that abstraction had been achieved. Similarly, the ability to correctly combine functions

could be based on a procedural, rather than a conceptual instantiation of that process. In

fact, the evidence from the interviews strongly suggested that this was the case for most of

the students.

Conclusion

The ultimate goal of this research is to improve the teaching and learning of algebra,

particularly in relation to the concept of function. The theoretical model proposed here

provides some structure and organization for the complicated fabric of interrelated ideas

comprising this notion. It is hoped that other researchers will continue and extend the

investigation of functions within this framework. In particular, the reifying component has

manifested itself as an appealing area for further analysis and exploration. A more complete

and refined understanding of this and other aspects of the function concept and its acquisition

is key to designing ways to help students develop powerful conceptions about this most

important mathematical entity.
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TOWARDS AN ALGEBRAIC NOTION OF FUNCTION:
THE ROLE OF SPREADSHEETS

Teresa Rojano
Centro de Investigacion y Estudios
Avanzados del IPN, Mexico.

Rosamund Sutherland
Institute of Education
University of London, U.K.

The idea that simultaneous variation of two variables in a numeric
function table is governed by a general rule is one of the basic notions
upon which the concept of mathematical function is developed. In this
paper we report the results from a Mexican /British collaborative project,
which investigated the potential of a spreadsheet enviroment to help
pupils develope the algebraic notion of a functional relationship. The
results suggest that: 1) when working with a spreadsheet pupils are
faced with the need to use a language which captures the generality
and variation aspects of a function; 2) this, in turn, influences their
capability to express general function and inverse function rules.

introduction
This paper presents the results of a Mexican/British collaborative project which
investigated the ways in which students use a preadsheet to solve algebra
problems. Within the project we worked with groups of 10-11 year old and 14-15
year old pupils. The results of the study with 14-15 year old pupils are discussed

in this paper. These pupils were chosen from pupils who throughout their
schooling had all experienced extreme difficulties with learning mathematics. We

particularly wanted to investigate the potential of spreadsheets for pupils who are

normally denied access to working with algebraic ideas. Many secondary school

pupils find it difficult to conceive that the simultaneous variation of two variables in

a numeric function table .is governed by a general rule. Nevertheless, this idea is

one of the basic, notions upon which the concept of mathematical function is
developed. This paper focuses on the ways in which the pupils used a
spreadsheet to express the algebraic notion of a functional relationship. Results
of the work on algebra word problems are reported in Rojano and Sutherland
(1993) and in Sutherland and Rojano (1993).

Theoretical Background
There are a number of interrelated aspects of Vygotsky's work which influenced

the research. The first is the idea that it is "the person-acting with rnediational

means" which is the focus of the study and analysis (Wertsch, 1991). Sign
systems are considered to be mediators of action an these include "various
systems of counting; algebraic symbol systems; works of art; writing schemes;

diagrams, maps, and mechanical drawings, all sorts of conventional signs"
(Vygotsky, 1962, pp 137). So, from the point of view of this study, we have
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focused on the ways in which pupils make use of the spreadsheet-algebraic
symbolism to solve function problems and how this relates to their use of other
mediational means, such as natural language, arithmetic language and algebraic
language. Vygotsky stressed that mediational means are sociocultural in the
sense that mediated action can not be separated from the social setting in which
it is carried out. From the point of view of this study this suggests that studies of
pupils can not be separated from influences such as the classroom setting which
includes the teacher's use of language. Central to Vygotsky's work is th eidea that
instruction supports development which he elaborates in terms of the zone of
proximal development (Vygotsky, 1978). We have used this idea when carrying
out the individual interviews with pupils, taking account of whether or not they
answered a question without support from the teacher, with a nudge from the
teacher, with considerable support from the teacher or with the support of a
spreadsheet.

Computer developments are rapidly changing what it is possible to manipulate
on the screen, which has implications for a theory of mediated action. Results
from previous and ongoing projects point to the importance of computer-based
algebra-like sign systems as mediators of pupil's algebraic problem solving
processes (Sutherland, 1992). Much of the work in mathematics education has
taken a theoretical position in which the emphasis is more on "what goes on in
the student's mind" than on "the student acting with mediational means" with a
suggestion that notation systems constrain pupils' thinking. This tends to have
more of a negative connotation than the idea that a sign system mediates
thinking. Also there has been a tendency to assume that pupils will first solve a
mathematical problem with natural language before they can solve it with
algebraic language. The results of this project suggest that development is more
complex than this.

Methodology
During the experimental work pupils engaged in a sequence of spreadsheet
activities and were interviewed individually at the beginning and end of the study.
The sequence consisted of two blocks of spreadsheet activitiesl. The first block
focused on the idea of function and inverse function and equivalent algebraic
expressions and the second block on the solution of algebra story problems. The
interview consisted of questions related to the solution of function tables (see for
example Fig.1) and algebra story problems. Here we focuse on our analysis of

1The teaching sequence was carried out over a period of approximately 5 months with
the pupils engaging in 10 hours of "hands on" spreadsheet work.
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the function and inverse function activities carried out by the 14-15 year old
pupils. Both British and Mexican pupils were low matehmatical attainers. The
British pupils had been taught very little algebra and had no knowledge of the
algebraic language. The Mexican pupils had previous experience of solving
algebraic equations and word problems and a number of them were resistant to
use the algebraic language.

Question 2c This is a table which tells you the value of y if you know the value of x.
x y

There is a rule connecting the y value to the x values,
i) What is the rule?
ii) Can you express the rule with a formula of the form y= ?
iii) What is the value of y if x is equal to 50?
iv) What would be the undo rule?

-2 -6
-1 -3
0 0
1 3
2 6

Fig. 1 Example of one of the four function questions administered to pupils in pre and post
interview.

Case studies were written for each of the British and Mexican pupils. These case

studies consisted of an analysis of pupils' developing approaches to solving the
function table problems. The analytic framework focused on the nature of
language used by pupils (natural, arithmetic, algebraic, spreadsheet) and the
nature of the scaffolding provided (for example nudge from the interviewer or use
of the computer).

Teaching sequence
After being introduced to some spreadsheet and mathematical ideas such as:
entering a rule; replicating a rule; symbolising a general rule; decimal and
negative numbers; and equivalent expressions (for example 5x and 2x+3x),
pupils were involved in function and inverse function activities. Figure 2 shows
one of the worksheets provided to the students for the function sessions. The
main purpose of this part of the teaching sequence was to help pupils to
develope the idea that simultaneous variation of two numeric columns can be
governed by a general rule. which can be expressed in the spreadsheet
symbolism. Control of variation of the independent variable (x) as well as
predicting tasks through manipulation of such a symbolic representation of the
rule, led some students to explore interesting approximation processes. The
purpose of increasing/decreasing questions was to introduce students to the
mathematical idea of analysing the behavior of a functional relationship within an

interval2.

2Function tables involving addition, substraction and multiplication rules were used
during the toaching sessions. Negative numbers and decimals were included in these
activities. The activities were presented in a slightly different way in Mexico and in the UK.

280 2J0



FUNCTION TABLES

Use the spreadsheet to reproduce the following tables.

A) Copy the rule of the function that appears in the

figure. Find the value of the function, when

x=30 2 Function of x
3

B) In B4, change the value of x to 100. Find the 4
value of the function, for x=115 5 2 7

C) Make the x values vary in steps of 2. Copy down
3
4 9

the function rule, when x is between 1 and 200. 8 5 10
Find the value of the function, when x=150 9 6 1 1

1 0 7 12
11 8 13

When x is between 1 and 200, the function 1 2 9 1 4

increases decreases remains the same. 1 3 1 0 1 5
1 4 11 16

D) Try to vary the x values in steps of 0.5 1 5 1 2 1 7

Fig.2 Example of one of the worksheets provided for the teaching of function and
inverse function.

The spreadsheet activities consisted of constructing general rules to reproduce
fuctions and their inverses in the form of function tables. This involved entering
and copying rules of the form ".--A2 * 3". The computer work involves synthesising

the expression of the general rule in symbolic form and predicting the numeric
values produced by this rule. In this respect there is a focuse on the general
(expressed algebraically and usually in the form of a table) and the specific
(expressed numerically). The spreadsheet activity provokes pupils to actively
construct general rules to fit given function tables. Pupils debug the general rules

on the basis of the feedback from the computer and are not reliant on the teacher

for support.

Pre and Post-interview Results
The function table questions used in the
pre and post - interview were presented in

a form similar to Question 2c) in Figure 1

and consisted of the following functions:

2a)
x y x

2b)
y

2d)
x y

0 3 0 -4 0 0
1 4 1 -3 6 2
2 5 2 -2 9 3
3 6 3 -1 12 4

4 0
5 1

Table 1 shows pupils' responses to question 2b), in the pre and post- interview, in

both groups, UK and Mexico (See Fig.1 for items i-iv). (C) indicates use of the
computer, (N) indicates nudge; and (S) is used to indicate substantial support..
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2b1) 2b11) 2b111) 2b1v) 2bv)
UK Pre Post Pre Post Pre Post Pre Poe Post
Eloise -2 plus 4 *4+2-3* plus 4 -40 54 -- 4 x-4
Sally -- - 4 -- 46 y+4 (S)
Carla - 4 -- x.0 -y =4 46 plus 4 x.044 ..y
Lucy take 4 each the 4 x-4 x4 46 46 add 4 each plus 4 x=y+4
James always 4 (N) take 4 x-4 48 add 4 Wy+4' (C)
Leo xn0,y-M -4 (Cr) 0+4 -- 48 82+4 (C)
Anthony all 4 apart (N) x Is 4 bigger than y *-4x-0' -- 48 y.4-x0 y-4+5.0
Dennis .4-4, -4' -- 'y -x -4' 46 plus 4 y.x4
Maks°

Enrique y.x- 4 a 4 y=x-4 y-x-4 46 46 yw x+4 y4-4 D2+4 (C)
Zaza Ha subtracting all with -4 D2.4 (C)(S) y.D2-4 (C) -- 46 -- 82+4 (C) (N) E2+4 (C)
Aida E14 (C)(N) y-x-4 (N) 46 (C) x.y+4 F1+4
Aleian A6 4 (C) -- --- --- 48 (C) 86+4 86+4
Edgar a> y E2 4 (C) y.4-cx x-4 -53 46 y> x ymx-4 E2-4
Elise' take off from x substract x from y (N) x minus 2 y=-4, x.0 46 (C) J3-4 (S) J3.4
Carmen substract -4 It goes by -4 (N) y.x-4 -x-x-x-x 48 46-5 a dint one, one that adds 4+4 8844 (C)

Table 1. Children's responses to Question 2b). In 2bv), pupils were asked in the post-interview to
express with a formula the undoing rule they found in 2biv).

In the pre-interview more than half of the pupils did not answer the function table
questions. Most of the pupils who did answer these questions expressed the
function rule in natural language, either in a more quantitative form (like Lucy, in
Table 1: "take four each time) or in a more qualitative form (like Edgar, in Table
1:"x is always grater than y"). These results are similar to the findings of
MacGregor and Stacey (1993).

Concerning the inverse function questions, some students, in the pre-interview
showed an understanding of the meaning of the "undo" rule but were unable to
express it in a precise way (for example, Carmen's response to question 2biv): "it

is a different one, one that adds"; and Edgar's: "y is greater than x"). Some others
could give a correct answer to this item, expressed in natural language (like Lucy:
"add 4 each", or Dennis: "plus four"). But in the pre-interview the majority of pupils
could not answer the inverse function problems.

In the final interview, after the spreadsheet experience, the majority of pupils
could answer correctly the function and inverse function questions. This was the
case both when expressing a general rule and when using the rule to calculate
specific values. Also, the majority of the students no longer expressed the
function rule in natural language.

There were some differences between the ways in which the Mexican and British
pupils expressed these general rules. For example, the Mexican pupils moved
towards being able to express functions and their inverses in algebraic larguage
whereas the British pupils moved to being able to express the same functions in
arithmetic and spreadsheet language (see, for example, results in Table 1). We
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suggest that this relates to the students' previous experiences of the algebraic
language.

In relation to the numerical aspect of the items, questions 2b) and 2c) presented
difficulties for some pupils who had a poor knowledge of negative numbers. This
numerical deficiency obstructed in these students their evolutionary process
towards the construction of a more general rule. The case of Alejandra (a
Mexican girl) illustrates well this issue.

Alejandra
As many of the pupils, in the pre-interview, Alejandra couldn't answer any of the
function table questions, while in the final interview, in general, she could answer
the questions without support and mostly correctly. She is a typical algebra
resistant pupil. At the beginning of the post-interview, she answered the first thing
that came into her mind related to school arithmetic:

Interviewer: "....there is a rule or formula that relates the values of y with the
values of x, What rule are we talking about?
Alejandra: " the rule of three?

Prompting her to read the table, she finds the rule and expresses it in natural
language. From this point on, she uses spreadsheet language and adheres to it
constantly for all the items. Her answers in paper and pencil are all expressed
with the spreadsheet language. It is noticeable in the post-interview how
Alejandra evolved from specific thinking and natural language towards general
thinking and symbolic expression (with spreadsheet symbolism). Whereas in
question 2c), she gives a specific rule for each row of the table. This is a clear
regression to thinking with specific cases and is probably due to an underlying
presence of the "signs rule" for whole numbers.

With regards to the connection of the spreadsheet symbolism to algebra code, it
was noticeable in some cases how children could move towards a "sensible" use
of algebra code without any explicit teaching. The most significant cases are
those found in the British pupils, who had had very little experience with the
algebraic language. The case of Eloise (a british girl) illustrates this issue.

Eloise
Eloise, as many of the pupils of the study was disaffected with mathematics and
disaffected with school. She was able to answer two of the simple function
questions of the pre-interview although she did not know how to describe the
rules in a conventional way. She used a mixture of natural language and
arithmetic to describe the general rules ("The rule is +3"). In the pre-interview
before the spreadsheet work, Eloise could sometimes be nudged into expressing
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a general rule which suggests that we were working within her zone of proximal

development. By the final interview, Eloise was able to answer all the function
and inverse function questions correctly and was well aware of the need for a
general rule. She was able to use the algebraic language to describe the rules
(direct function: =y+4; and its inverse: =x-4). When she was asked what she had

learned from the computer work she said "formulas it's easier to work it out on
the computer". When writing the rule as y=x+3 she said that she thought of x as a

column. She was also able to find the inverse of simple functions without the
support of the computer and expressed these inverses in algebraic code
(something which she had never been explicitly taught).

CONCLUDING REMARKS
Given the widely reported difficulties which most pupils have with function table
problems and given that the pupils in our study were particularly weak
mathematically the results from the study suggest that work with a spreadsheet
can produce substantial changes in pupils capability to express general function

and inverse function rules. We beleive that this is because within a spreadsheet
pupils are faced with the need to use an algebraic-like language which captures
the generality and variation aspects of a function. In this sense the spreadsheet
language takes on a mediating role in the pupils construction of the algebraic
notion of function.
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STUDENTS' CONCEPTIONS OF GRAPHICAL MODELS OF LINEAR

AND NON-LINEAR FUNCTIONS

Wendy N. Coulombe

Center for Research in Mathematics and Science Education
North Carolina State University

The objectives of this research were to identify students' conceptions

concerning "rate of change" models of linear functions and non-linear functions,

and to examine the relationships that exist between students' abilities to

represent and interpret graphical models of events involving rates of change.

Students in middle grades, high school, and college (N=250) completed a

paper and pencil assessment of open-ended questions relating to interpreting

graphical models of rates of change and creating graphical models from rates of

change information. Whole-class data were collected in mathematics classrooms

during regular instructional time of volunteer teachersfmstructors. Data were

anonymous from the students, with whole-class data being identified only in

reporting by grade/math course levels. Qualitative methods, including multiple-

sorts will be used to analyze the data.

The theoretical framework of this cognitive research is constructivism.

Constructivists believe that knowledge is constructed by the learner in interaction

with the world and while these constructions make sense to the individual, they

may not match the constructions of other students, teachers, and experts. With

this research we expect to find a variety of constructions concerning linear and

nonlinear functions. Initial analysis shows that students have more alternative

conceptions concerning non-linear relationships than linear relationships. There

were many instances of internal representations of graph as picture and

misinterpretation of zero slope. Other alternative ideas to be discussed will

concern fixation upon large graphical features, concavity, and across-time

relationships.
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STUDENTS' DEVELOPMENT OF LENGTH MEASUREMENT CONCEPTS
USING A SPECIALLY-DESIGNED TURTLE GRAPHICS ENVIRONMENT1

1as..H. Clements
State University of New York at Buffalo

Michael T. Battista
Kent State University

Julie Sarama Meredith
Sudha Swaminathan

State University of New York at Buffalo
Sue McMillen

D'Youville College

We investigated the development of linear measure concepts within an instructional
unit on paths and lengths of paths, and the role of noncomputer and computer
interactions in that development. Data from case studies indicated three types of
strategies for solving our different length problems: (1) Some students did not
partition lengths, but also did not integrate the number for the measure with the
length of the line segment. (2) Most students drew hash marks, dots, or line
segments to partition lengths; they needed to have perceptible units such as this to
quantify the length. (3) A few other students did not use partitioning; however, they
did use quantitative concepts in discussing the problekkms and drew proportional
figures.

Our goal in the present study was to investigate the development of linear

measurement concepts within an instructional unit on paths and lengths of paths, part

of a large-scale curriculum development project. We also investigated the role of

noncomputer and computer interactions in that development.

The basis of the study's theoretical underpinnings, the instructional unit, and the

software is that children's initial representations of space are based on action, rather

than on passive "copying" of sensory data (Piaget & Inhelder, 1967). An implication

is that noncomputer and Logo turtle activities designed to help children abstract the

notion of patha record or tracing of the movement of a point--provide a fertile

environment for developing their conceptualizations of simple two-dimensional

shapes. Combined noncomputer and Logo experiences also may affect young

students' development of knowledge concerning linear measurement, including

knowledge of the effect of unit size (Campbell, 1987). This is significant, given that

these students have difficulty dealing with quantitites measured with different units

(Carpenter & Lewis, 1976; Hiebert, 1981).

trim° to prepare this material was partially provided by the supported by National Science
Foundation Research Grant NSF MDR-8954664, An Investigation of the Development of
Elementary Children's Geometric Thinking in Computer and Noncomputer Environments."
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Method

Participants in the first fiest test were two girls, Beth and Stephanie, and two

boys, Ryan and Chris, from a rural town, all 9 years of age. Participants for the

second test were students in two third-grade classes from inner-city schools, 85%

African-American and most of the remainder Caucasian. As was typical for the

school, 80% of the students qualified for Chapter 1 assistance.

The Turtle Paths2 unit engages third-grade students in a series of combined

geometric and arithmetic investigations. The unit teaches about geometric figures

such as paths (including properties such as closed), rectangles, squares, and

triangles; geometric processes such as measuring, turning, and visualizing; and

arithmetic computation and estimation. Throughout the unit, students explore paths

and the lengths of paths. At first they walk, describe, discuss, and give commands

to create paths. Students give Logo commands to specify movements that create

such paths, starting the development of a formal symbolization that is built up during

the remainder of the unit. Arithmetic and geometry continue to be linked as students

find the missing lengths and turns in given paths. In doing so, they must analyze

geometric situations and apply addition and subtraction in a meaningful setting.

Finally, students command the Logo turtle to draw many different shapes of a given

perimeter, or overall path length. Students complete the unit by designing and

programming a face picture, for which each part (e.g., ear, mouth) has to have a

predetermined perimeter.

A modified Logo environment, Geo-Loge, is an intrinsic component of the

instructional unit. Geo-Logo's design is based on curricular considerations and a

number of implications for the learning and teaching of geometric concepts with turtle

graphics (Clements, Meredith, & Battista, 1992). One critical feature of Geo-Loge is

that students enter commands in "immediate mode" in a command center (though

2Published by Dale Seymour.
3Geo-Logon, copyright, Douglas H. Clements and Julie S. Meredith. Development system
copyright, Logo Computer Systems, Inc. Called lathalallfm as a stand-alone environment
published by LCSI. All rights reserved.
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they can also enter procedures in a leach" window). Any change to commands is

reflected automatically in the drawing. For example, if a student changes fd 20 to fd

30, the change is immediately reflected in a corresponding change in the geometric

figure. The dynamic link between the commands and the geometry of the figure is

critical; the commands in the command center always precisely reflect the geometry

in the figure. Other features include a variety of icon-based tools for defining

procedures, measuring, and so on.

In the pilot test, case studies were performed with all four students. In the

second field test, two students were studied intensely (Jimmy and Susan); when

students worked in pairs, the case study student's partner was also observed (Gina

was Susan's partner).

Results4 and Implications

Three types of strategies were observed. Some students did not partition

lengths, but also did not connect the number for the measure with the length of the

line segment. These students tended to be those identified by their teacher as

being low in mathematical ability. We never observed them making statements that

would indicate that they were operating on quantities. Furthermore, when they were

asked to draw a figure such as a rectangle with certain dimensions, there was no

discernible use of those dimensions in their drawings. They interpreted the

problems as numerical problems, rather than as measurement problems.

The second type of strategy was most common among these third graders.

These students drew hash marks, dots, or line segments to partition lengths (often

not maintaining equal length segmentations). A turtle step is a small unit (1 mm or

less on most monitors); moreover, children's experience is probably such that

objects 100 units in length are substantial in size. These factors may have made the

abstraction of the turtle step difficult for students who wished to assign numbers in a

meaningful, quantitative manner. Therefore, they marked off lengths in units that

made sense to them, usually units of 10. They needed to have perceptible units

4Only general conclusions can be presented here; full results can be obtained from the authors.
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such as this to quantify the length (Steffe, 1991).

A few other students did not use partitioning (or ceased using partitioning at

some point). These students, however, used quantitative concepts in discussing

the problems and drew proportional figures. Therefore, we assume they had

interiorized units of length and had developed a measurement sense that they could

impose mentally onto figures. These observations substantiate Steffe's argument

that these children have created an abstract unit of length (Steffe, 1991). This is not a

static image, but rather an interiorization of the process of moving along an object,

segmenting it, and counting the segments. When consecutive units are considered a

unitary object, the children has constructed a "conceptual ruler' that they can project

onto unsegmented objects (Steffe, 1991).

We hypothesize that cnce children using the first type of strategy have had

sufficient physical measurement experience iterating and partitioning into units, they

construct schemes that allow them to partition unsegmented lengths, but only on the

figurative level. That is, they need to use physical action to create perceptual

partitions. In solving problems, these partitioning schemes develop the constraint

that equal intervals must be maintained. This constraint leads to the construction of an

anticipatory scheme, because the equal-interval constraint can be realized most

efficiently when it is done in imagery, in anticipation, without forcing perceptual

markings. At this point, strategies of the third kind emerge.

Finally, some students, such as Jimmy, were skilled with numbers and

computation, including mental computation. Jimmy, however, gave few indications

of performing operations on spatial representations and his computations did not

appear to be linked to the quantity in the situation. This should not be construed as

implying that Jimmy used no imagery in performing arithmetic, but only that, when

doing exact computations, he did not image the length of the segments constituting

the geometric shapes in the situation we had created . In more complex situations,

he used mental computations that were connected to these lengths, as he iterated

another length to estimate the missing length; however, he did not consider other
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relationships within the geometric figure. Susan, on the other hand, is representative

of students who do connect, at least in some situations, their knowledge of numbers

and measurement quantities. Susan used arithmetic to solve all missing lengths

tasks. Jimmy preferred to use visually-based guesses when figures were more

complex, even though his arithmetic skills per se were as (if not more) sophisticated

than Susan's. Thus, students who have connected numeric and spatial

representations may evince different problem-solving strategies in geometric

situations than those who have forged fewer such connections.

As teachers, we might view students who did not connect spatial and numerical

schemes, and used only the latter to solve problems, as having different but equally

effective solution strategies. We believe, however, that such students would

benefit from synthesizing these two schemes. First, students need to pay attention

to the scale that is provided for certain figures. This is important for their future

learning of geometry, but also in many other situations, such as using maps and

graphs. Second, this study's data indicates that those students with connected

schemes had more powerful and flexible solution strategies for solving spatial

problems at their disposal.

There are five characteristics of the computer environment that aided

construction of units for these children. First was a change in problem situation. The

small steps (and thus larger numbers) on the computer leads to conceptualizing and

counting superordinate units (it is difficult to even image a single turtle step). So,

work in this environment may encourage the creation of a more elaborated

measurement scheme.

Second, the computer provides feedback that children can use to reflect on

their thinking. One pair, Beth and Stephanie, had planned a rectangle with sides

labeled 70 30 60 40. Beth used dashed lines to keep track of the 1 0-length

segments" of each side, however, noncongruency of these small measurement

segments allowed the drawn figure to be rectangular. When she tried this solution on

the computer, however, the resulting open path immediately led her to relate her
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side lengths tc the properties of a rectangle. The girls changed their procedure to a

rectangle of sides of 60 and 30...and believed at first that this was 200 steps in total

length. With further discussion after a prompt by the teacher, they changed to a

rectangle with sides of 70 and 30. In another discussion, the teacher asked children if

these commands would produce a rectangle: fd 40 rt 90 fd 65 rt 90 fd 20 fd 20 rt 90

fd 50 fd 15 rt 90. Both Susan and Gina agreed that it would be a rectangle until they

tried drawing it on paper. Susan's drawing was not a rectangle; Gina's was. They

still disagreed, even after Gina explained to Susan that "20 and 20 added up to 40

which is actually equal to the other 40" and that the teacher "was only tricking" them.

Susan felt the need to check this on the computer but then was convinced; she

explained the 50 + 15 = 65 to others. The class ended with Gina and Susan giving

each other "tricky" lengths.

Third, the computer context was motivating for these students. The flexibility

and dynamic connections between symbol and graphic may have combined to

engender a fourth advantage. Beth and Stephanie never combined their commands

(e.g., combining fd 60 and fd 20 to be fd 80) when they wrote Logo commands by

hand, but did combine them when they typed the commands into the computer.

Only later did they begin to combine commands on paper as well.

A fifth advantage relates to the integration of the spatial and numeric. This

occurred rarely, especially in noncomputer situations. When it did occur, the

statement was often not about spatial extent, or length, but about dynamic

movement. For example, Gina and Susan used arithmetic to solve problems, but

their language was about the turtle: "It's going on 50, then 30 more, so that's...".

The emphasis here is not on the geometric figure, as much as it is on the turtle's

movements. Thus, the emphasis on physical action and the dynamic connections

between the symbolic and graphic representations in Geo-Logo facilitated children's

development of such connections for themselves. This conclusion roust be

tempered with a recognition that these connections were tenuous and situation-

bound in many instances. It is significant, however, that we never observed
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students using a direct, point counting process to define units (Cannon, 1992); rather,

they imaged and counted line segment units.
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THE ROLE OF LANGUAGE IN GEOMETRIC CONCEPT FORMATION:

AN EXPLORATORY STUDY WITH DEAF STUDENTS

Marguerite M. Mason

University of Virginia

This exploratory study examines geometric understanding and
misconceptions among five deaf students, ages 7 - 10, enrolled in a residential
state school for the deaf, and their deaf teacher. During interviews the subjects
visualized a triangle and then described it; sorted quadrilaterals and triangles,
and answered questions dealing with triangles, squares, rectangles, and
circles. After eight days of instruction, the six subjects were interviewed again.
Prior to instruction, the subjects were operating at van. Hie le Level 1 (Visual) in
the topics examined with many misconceptions such as all triangles have two or
three sides the same. Some difficulties which appear to arise from the limited
exposure to mathematical language and the use of particular symbols in sign
language were identified.

The van Hie les postulated that language plays an important role in the

acquisition of geometric understanding. O'Neill (1968) feels that geometry is a

particularly difficult subject for deaf students because of the need for language.

Indeed, Kemp (1990) found the performance of deaf college age students in

geometry to be low, with many misconceptio:m present. Hillegeist and Epstein

(1989) hypothesized the cause of the comparatively poor performance of deaf

students in geometry to be a combination of the increasing complexity and

abstractness of the mathematical concepts and "the difficulty of finding an

effective language in which to teach and learn those concepts" (p. 704).

This study examines geometric understanding and misconceptions

among a deaf teacher and her five deaf students, ages 7 -10, enrolled in a

residential state school for the deaf. They used a combination of American Sign

Language (ASL) and Signed Exact English (SEE) for communication.

Additional background information on the students may be found in Table 1.

The five students and their teacher were interviewed individually by a

mathematics educator who is also a qualified interpreter. Initially, the subjects

were asked to visualize a triangle and then describe it. They were also shown a

set of cut out quadrilaterals and, later, a separate set of cut oui triangles and
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Table 1

Students' Background Information

Student 1 2 3 4 5

Age 7.8 9.3 9.5 10.10 11.1

Cause of hereditary hereditary hereditary hereditary unknown
Deafness

Degree of BEA not BEA BEA BEA
hearing loss 101 dB reported 96 dB 80 dB 58 dB

profound severe profound severe

Communication sign & sign & sign & sign & sign &
method speech speech speech speech speech

Age of onset birth
of deafness

birth birth birth unknown

Add'I none
handicaps

none none none ADD,
hyperactive,
tremors on
left side

Academic achievement*
Level test P2
Vocabulary 2.2/nn
Reading 2.0/nn
Level test P1
Math concepts 2.1/27
Computation 21/35
Application 1.4/17

IQ (WISC-R)!3 superior

Other

P2
3.0/nn
3.6/95
P2
4.1/96
3.8/94
3.1/93

Al
7.4/nn
4.5/92
P2
3.5/79
2.8/52
4.0/88

high average average

deaf deaf
parents parents

P3
4.7/nn
5.7/97
P2 P2

2.5/44
4.2/68 3.2/47
3.8/81 2.5/52

average average

deaf knew little sign
parents entering school

keen on speech

*The scores reported were obtained from the Stanford Achievement Test - 8th
Edition administered approximately three months prior to the beginning of the
study. The first number reported is the Grade Equivalent. The second number
is the Hearing Impaired Percentile. Level P measures content commonly taught
hearing students in grades 1.5-2.5; Level P2 = grades 2.5-3.5; Level P3 =
grades 3.5-4.5. Level Al = grades 7.5-8.5. The students were tested at the
levels deemed most appropriate for their level of work.
nn = not normed for this age group. *** above measurable range
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were asked to sort the shapes in any manner they wished, explaining their

criteria for sorting. They repeated these tasks until they were unable to devise

any new criteria for sorting. In addition, they were given questions developed

by Mayberry (1981) dealing with triangles, squares, rectangles, and circles.

After eight days of instruction by the researchers in which both the five students

and their teacher participated, these six subjects were interviewed again.

Pre-Instruction Findings

Analysis of the protocols indicates several patterns. Prior to .instruction,

all of the subjects, including the teacher, appeared to be functioning at van

Hie le Level 1 (Visual) in the topics examined. They compared the shapes they

were describing to known shapes. For example, various triangles were

described as a ramp, a point on a star, a roof, a giant's slide, a pirate's hat, a

tent, a wedge, a pyramid, an ice cream cone, and part of a see saw. When

asked to think about a triangle and then describe it, three of the students

mentioned that it had three corners. Only one student said that her triangle had

three corners and three sides. The word "angle" was never used. None of the

students displayed knowledge of any relationship between the parts of the

figure. Another indication that the subjects were functioning at Level 1 is that

they seemed to generally view figures holistically such as sorting shapes into

categories of small, medium and large.

Some difficulties appear to arise from the limited exposure to the

language of mathematics and the use of particular symbols in sign language.

For example, the sign for "triangle" is roughly in the shape of an equilateral or

isosceles triangle. All subjects except one sorted the isosceles and equilateral

triangles into one group and identified those as being "triangles". The other

three sided polygons were not recognized as triangles.

Although they did not have the correct label for right angles, the subjects

did focus on the right angle in both triangles and quadrilaterals. For example,
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most subjects sorted the non-isosceles right triangles into a separate category.

Although not recognized as triangles, the right triangles were described as

shapes having "corners" or looking like ramps. (Ramps had just been studied in

science.) The hypotenuse was placed horizontally, parallel to the edge of the

table by the students who said the shapes looked like ramps.

Words with multiple meanings sometimes lead to incorrect but generally

logically consistent answers. For example, when the subjects were asked to

sign the question:

Which of these are right triangles?

every subject signed the word "right" using the sign meaning "correct". All but

one subject indicated the third figure from the left as being the "right (correct)"

triangle. These answers are consistent with the finding that only isosceles and

equilateral three-sided polygons are triangles. With their concept image of a

triangle, this would be the only correct triangle in the group.

The Interviews After Instruction

After the initial interviews, all subjects participated in an eight day

geometry unit, based on the phases of learning hypothesized by the van Hieles.

After the instruction, the subjects were again interviewed. All but Student 4

mentioned 3 sides and 3 angles or 3 corners as they described the triangle they

visualized in their minds. For the most part, the way they sorted the shapes had

changed dramatically. Now all but Student 2 identified all the three sided

polygons as triangles. They were, however, somewhat tentative in their

299 307



identification of non-isosceles triangles as triangles during the question and

answer portion of the interview. Only Student 1 persisted in use of her criteria of

"small, medium, and large," but now she said "small, medium, and large

triangles." Student 3 first sorted according to the categories "equial I forgot the

rest", "their sides are uneven", and "isosceles", but she then sorted into "look

like ice cream cones... don't look like ice cream cones" for her second sort.

The teacher's reasoning appeared to change more than the students'

reasoning did. During the post instruction interview, the teacher often moved

her hands in the air to trace the shapes she was thinking about, and apparently

tried out various possibilities in this manner. However, when asked if a right

triangle always has a largest angle, the teacher answered "What is meant by a

largest angle? You haven't taught us." One conclusion is that she still seemed

to feel that she should remember answers rather than reason them out.

Discussion

Although the students and the teacher shared many of the same

misconceptions (e.g. all but one of the students thought a triangle had to have

two or three congruent sides, while the teacher thought a triangle had to have

all three sides congruent), it is likely that the students did not get these ideas

from this teacher, who had not taught geometry to these students.

The students became aware of the parts of figures during their eight day

experience with geometry, but seemed only to progress within van Hie le Level

One or to the lower stages of Level Two. The teacher, however, made rapid

progress and was operating at Level Three (Abstraction) in the Post-

Intervention Interview, using informal reasoning and inclusion relationships

frequently. The teacher, who is a fully certified teacher of the hearing impaired,

admitted that math was not her strong point. She had never taught any

geometry. She said that in college she took only high school level algebra and

geometry - no college level math at all. This preparation is consistent with
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Goodstein's findings (1981) that teachers of the deaf at the elementary level

have significantly less mathematics content courses than the 12 hours of

collegiate mathematics recommended as a minimum by the Committee on the

Undergraduate Program in Mathematics of the Mathematical Association of

America and significantly less than those taken by public school teachers.

However, after only eight days of instruction, this teacher was now extremely

confident of her ability to think through problems in geometry, where previously

she had been hesitant.

The van Hie les' supposition that language plays an important role in the

acquisition of geometric understanding was confirmed. Originally, most of the

subjects did not identify scalene triangles as triangles. One factor which is

hypothesized to contribute to this misconception is the iconic nature of the sign

used by the subjects for "triangle." They used an initialized sign, i.e., each hand

made the letter "t", and while maintaining the letter shape, outlined a triangle

beginning at the apex and ending at the midpoint of the base in a standard

"gravity based" configuration. The shape thus outlined is roughly an equilateral

or isosceles triangle.

It would appear that prior to the intervention, all subjects were treating the

sign for triangle as a picture of a triangle and not as a symbol representing the

broad class of triangles. Perhaps this is due to the nature of American Sign

Language or to the low van Hiele level the subjects were operating at, or a

combination of both factors. As Hillegeist and Epstein (1989) noted, the

property of sign language which tends to associate specific signs with specific

concepts is important. The researchers did not specifically discuss with the

students how the sign for triangle represented all triangles, even though not all

triangles looked like it. The concept image held by the subjects was persistent,

and they tended to fall back on it when in doubt. Several of the students and

the teacher spontaneously finger spelled the word "triangle" in the Post-
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Intervention Interviews rather than using the sign, perhaps indicating a

differentiation in their minds between their new definition of the word "triangle"

and what they had previously associated with sign "triangle".

The multiple meanings for the same English word such as "right"

meaning "the opposite of left", "correct", and "90°" also apparently caused

misinterpretations. These subjects exhibited the same difficulties with

mathematical terms which also have English meanings (e.g., similar as "almost

the same") as hearing students. The students should be specifically taught a

mathematical vocabulary and to make distinctions between mathematical

usage and common usage of words if they are to successfully solve

mathematical problems.

In conclusion, the low geometric knowledge and understanding of these

deaf subjects may be the result of several factors including lack of instruction,

limited exposure to mathematical language, and the use of certain symbols in

sign language. However, as demonstrated in this study, deaf students can

learn basic geometric concepts, provided that the instruction is tailored to their

particular needs in areas such as specific language development with hands-

on experience following the van Hie le phases of learning.
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GEOMETRY AND VISUALIZATION IN DIFFERENT ENVIRONMENTS

Marcela Santillan Nieto

Universidad Pedagogica Nacional, Mexico.

The main purpose of this study is to get a better understanding about the role of geometric

contexts, different mathematical processes and specific environments in the development

of student's notions about: distance, plane and dihedral angle, parallelism and flatness

A case study methodology was chosen, to find out student's meanings and strategies, their

evolution and the role of the different contexts Two categories were used to look, from a

semiotic perspective, at the meanings and strategies used by students. They had been

classified as extrageometrical when the meanings and strategies were generated and
heavily dependent on the context; and intrageometrical when the meanings and strategies

were grounded in presupposed geometrical objects or relations.

Upon what could motivate intrageometric meanings and relations to appear, or why and

how students may progress through these categories, Vygotsky attributed this

development to the demands placed on the students by communication with adults or

more competent peers.

So far most of the students, when confronted with new geometric objects or relations, rely

more heavily in extrageometric features to clarify reference. It is not until later stages that,

in cases of ambiguity, students endeavor to make use of geometric relations. This has not

been the case in the Logo environment, where some students found almost from the very

beginning symbolic demands and visual aids formally structured.

An explanation for the former could be that the mastery of pragmatically presuppositions

based on not explicit geometric relations, demands to operate on a context where sign-

sign relationships are essential. The distinction between finding an explicit geometric

relation or making auxiliary constructions to point to the relation, requires a change where

a new type of geometric object or relation becomes part of mental representations and

mental processes.

It became one of our aims to understand under which constrains we could create a
geometrical culture where students could assign a functional power to the geometric

objects and relations. For some students systematic variants were used and tasks were

gradually made more complicated, starting with more familiar objects changes were

systematically introduced ending with tasks where the geometric object or relation was not

explicitly embedded.

This approach became more difficult in the case where students choose to solve the

problems almost exclusively with concrete based materials and found difficulty to work in

the Logo environment.

303 311.



Probability and Statistics

RESEARCH PAPERS
Development Of The Concept Of Randomness

Kathleen E. Metz

POSTERS
Paths to Interpreting Statistical Infomiation

Andrew Ahlgren

312

307

314



DEVELOPMENT OF THE CONCEPT OF RANDOMNESS

.Kathleen E. Metz

University of California, Riverside

Abstract

The study analyzed the development of the concept of randomness, from kindergarten to

third grade to adulthood from the standpoints of: (a) the extent to which subjects evoke chance or

determinism in the context of a physical phenomena with a significant aspect of randomness; and

(b) the particular interpretations underlying judgments of chance or determinism. Thirty-six

subjects, even divided by age-level and gender, participated in the study. We used a modification

of Piaget's marble tilt box problem, which he posited as a relatively transparent example of

randomness. All sessions were videotaped to enable three levels of microdenetic analysis. Just

33% of the kindergartners evoked chance, as compared to every third grader and undergraduate.

However, with frequencies increasing with age, subjects at all ages evoked determinism as well.

Finer levels of analysis revealed interpretations, at radically different levels of sophistication,

underlying both chance and determinism.

The research literatures concerned with the cognition of chance are marked by blatant

contradictions concerning what students of different ages can understand and the nature of the

challenges in grasping and appropriately applying this core idea. For example, most of the

developmental literature assumes that the idea of chance, at least in the form of the construct of

randomness, emerges In the preschool years (e.g.; Fischbein, 1975; Kuzmak & Gelman, 1986).

Piaget and Inheider (1975) concluded that the Idea of randomness emerged around seven years of

age. However, Green (1988) concluded that the eleven to sixteen year olds' concept of

randomness is, at best, fragile.
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From the perspective of much of the adult judgment and decision-making literature,

adequate understanding and utilization of the concept of randomness tends to looks nontrivial

(Ayton, Hunt & Wright, 1989; Tversky & Kahneman, 1971). In this vein Lopes asserts, "to conclude

. .. that naive person's conceptions of randomness are poor in general implies that randomness is

clearly defined and well-documented by those who are not naive. Nothing could be further from the

truth" (Lopes, 1982, p. 628).

In the midst of this considerable confusion, many countries have recommended that

chance and probability be incorporated in the mathematics curriculum beginning in the primary

grade years. The NCTM (1989) calls for children in grades K-4 to collect and interpret data, and

"explore concepts of chance". A deeper knowledge of how children interpret situations involving

significant aspects of chance, including the aspects they do and do not grasp and the reasoning

underlying their judgments, could support our successful implementation of NCIfyl's statistics and

probability stand.

This study addressed this need by closely examining kindergartners' and third graders'

thinking in interaction with one of the classic physical randomness task domains, Piaget and

Inhelder's (ibid.) problem of the mixing of marbles in a tilting box. Given the contradictions between

the developmental and adult cognitive literatures and the significant gaps in understanding and

utilizing chance that have been identified among adults, we included undergraduates In the study.

This design enabled analysis of those aspects of the concept and its utilization that may or may not

be a function of cognitive development or domain-specific knowledge occurring in subsequent

grades. We assume that some of the contradictions in the research literature concerning what

aspects of chance emerge at what age reflect the methodological tangle Newell (1972) has

described as "averag[ing] across strategies". To address this potential pitfall, the study employed

three levels of microgenetic analysis, as enabled by videotapes.
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METHODOLOGY

Subjects

Subjects consisted of 12 kindergartners, 12 third graders, and 12 undergraduates.

Subjects at all age-levels came from multi - ethnic populations and were randomly selected from

those who volunteered. Each age-level had the same number of males and females.

EitaarlinenialPiarmium

The experimenter showed the subject the tilt box with marbles in a row across the lower

side, six of one color on the left and six of another color on the right. She asked the subject to try to

predict and explain what the arrangement of marbles would look like after a tit on its axis (straight up

and back). She also asked the subject to consider whether or not one could know for sure and his

or her reasons why. After the subject observed the tilt, (s)he was prompted to reflect on what

happened and why. Then the experimenter elicited the subject's ideas about future events,

including whether or not the arrangement would ever return to its original state and, if so, after

approximately how many tilts. Finally, the experimenter asked whether identical initial conditions

and identical actions on the part of the agent doing the tilting would result in the same

transformation of the marble arrangement.

Data Analysis

The marble tilt box was analyzed according to a three-level analytic framework. The top two

levels are considered in this paper. Level I analysis consisted of the top-yrain attribution of

Deterministic, Presence of Chance; Other , or Uncodeable. Level II consisted of specific

interpretations underlying the Level I judgments. (See Table 1.) One interpretation, Data Driven,

involved neither chance or determinism. Two interpretations involved determinism: Order as the

Natural State and Deterministic Physical Model. Three interpretations involved chance: Affordance

of Movement Among Inanimate Objects, Internal Attribution of Uncertainty, and Indeterministic

Physical Model. Probability could be added as a modifier to an interpretation. Level III consisted of

a reexamination of the videotapes to elucidate cross-age differences and commonalities
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concerning how and when the Level II interpretations were evoked. Two coders independently

analyzed the complete data set at Levels I and II. Level III was conducted collaboratively. The

results presented in this paper are limited to the first two levels.

Table 1
Abbreviated Version of Interpretations

Interpretation Abbreviated Codin Criteria
Data-Driven

Reasoning
* predictions & explanations formed on patterns the subject has observed in

this situation or related task
* no consideration of how these atterns are enerated

Order as the
Natural State

* natural state as ordered
* tendency of elements to return to ordered state expressed in teleological or

animistic terms
Deterministic

Physical Model
* subject bases predictions on analysis of the physics of the marble tilt box

apparatus and marbles movement within the tilt box
* inference that elysics of the situation supports precise predictions
* chance attributed to assumption that the marbles, as inanimate objects, have

no intentionality or internal controls
Affordance of

Movemnt among
Inanimate Obits.

Internal Attribution
of Uncertainty

* uncertainty stems from subject's perception of personal ignorance of the
system

Indeterministic
Physical Model

* subject bases predictions on an analysis of the physics of the marble tilt box
and marble movements within the tilt box

* the eh sical model does not su rt recise eredictions
+ Probability
Modifier to chance
iinte retations

* patterns in the randomness
* some outcomes more likely than others
* distant essibilit of eventual return

Other To be specified by the coder
Uncodeable

RESULTS AND DISCUSSION

Level I analysis resulted in 157 coded episodes, with an interrater reliability of 92%. 111

(77%) of these episodes were also codeable at the level of specific interpretation underlying

chance or determinism, resulting in an interreliability of 88%.

Level I.

Analysis of evocation of chance revealed marked development from kindergarten to third

grade. Whereas only 33% of the kindergartners ever evo:, d chance, 100% of the third graders did

and 100% of the undergraduates. These findings are consistent with the Piaget's conclusion that

children construct the concept of chance, as the difference between predictable and unpredictable

events, about seven years of age.

3103'6



However, the data concerning evocation of determinism diverges from Piaget's model. In

Piaget's model, if subjects "have" the concept of chance, they are assumed to evoke it here, in what

is presumed to be a particularly transparent instantiation of randomness. This study found

deterministic interpretations at all age levels, manifested by 50% of the kindergartners, 25% of the

third graders, and 42% of the undergraduates.

Level 11

Development underlying the attribution of determinism

Analysis of reasoning underlying the attribution determinism reveals fundamentally different

interpretations, at radically different levels of sophistication. Where kindergartners evoke

determinism, it always stems from a belief in Order as the Natural State, a sense of the ordered state

of the marbles as their natural state and consequently the state to which they will return. However,

when undergraduates evoke determinism, it stems from Deterministic Physical Model, the

inference that the physical apparatus can support precise predictions (either in the form of

conservation of the arrangement or lawful transformations). The third graders constituted a middle

case, with 17% arguing for determinism on the basis of Order as the Natural State and 8% arguing

for determinism on the basis of a Deterministic Physical Model.

12012WEileIILIffidetLYILlg_1112atifiktiliCaLats&anr&

Reasoning underlying attributions of chance was even richer and more varied than

attributions underlying determinism. Each of the four bases for chance interpretations appears

sensible, albeit from another representation of the situation. The most primitive basis for chance

was Affordance of Movement Among Inanimate Objects, the sense that because the marbles are

inanimate they have no intentionality or internal controls and thus their transformations will be

chance. This manner of thinking (manifested at least once by 8% of the kindergartners and 17% of

the third graders) appears to be a kind of negaticn of the position that order constituted the nature

state.
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Chance could also stem from their Internal Attribution of Uncertainty. Kahneman & Tversky

(1982) have argued that this distinction between attributing uncertainty to the external world versus

our state of knowledge is fundamental from an epistemological perspective. A minority of subjects

at each age level exhibited this sense of chance (8% of the kindergartners, 8% of the third graders

and 17% of the undergraduates).

Two other oases for chance appeared with increasing frequency with age. Chance could

arise from a analysis of the physical system as not supporting precise predictions, an interpretation

referred to as Indeterministic Physical Model. This basis was manifested by no kindergartner, 32%

of the third graders and 83% of the undergraduates. Alternatively, chance could be grounded in a

mathematical representation of the situation in conjunction with probability (manifested by 8% of the

kindergartners, 25% of the third graders and 67% of the undergraduates). From a mathematician's

perspective, it is only at the point, where subjects appreciate that patterns emerge across the

course of events that are in themselves unpredictable, that they have grasped randomness. The

most complex representation, basing chance and probability on an analysis of the physics, was

manifested only by a minority (25%)of the undergraduates.

CONCLUSIONS

This study used the marble tilt box, a situation which the developmental literature has

assumed to be a relatively transparent instantiation of randomness, to unpack the emergence of

randomness and the challenges in its interpretation. We employed three levels of microgenetic

analysis, in conjunction with videotaped data, to get at the meanings and thought processes

underlying children and adults' attributions of chance and its absence.

Chance in the sense of the unpredictability of a single event enters in well before an

appreciation of randomness, as the unpredictability of single events combined with a sense of the

patterns that emerge across a large number of repetitions of the event. Interpretations at

fundamentally different levels of sophistication underlay both attributions of chance and
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determinism. In addition to differences in conceptual development, domain-specific knowledge

and epistemological dispositions come into play.
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PATHS TO INTERPRETING STATISTICAL INFORMATION

Andrew Ahlgren

American Association for the Advancement of Science

By the time they leave high school, all Americans should be able to make

informed interpretations of statistical information such as is commonly reported

in the mass media. One requirement is some understanding of probability,

which grows from an elementary-school recognition that some events are more

likely than others, through middle-school quantification of likelihood as a

number, to high-school ability to estimate probabilities either by tabulating

empirical data or by enumerating possible outcomes. Another requirement is

knowledge of the features of samples, from simply recognizing that a lot may

be learned about something from a small piece of it, through recognizing the

many ways that samples can be misleading, to appreciating that the larger an

appropriate sample is, the better the information it provides. And a third

requirement is familiarity with statistics that summarize group data, beginning

with displays of all the data, through description of central tendencies and

variation, to correlations between different variables. Obviously there are

requirements along the way for mathematical ideas at first graphing, then

fractions and proportions, and finally alternatives in mathematical modeling.

Also required, however, are notions of variation within groups, of experimental

control, and of bias in doing and reporting studies. A map is presented for

connecting all of these ideas as students progress in sophistication from

primary to high school, drawing from AAAS's research-based Benchmarks for

Science Literacy. Participants are encouraged to suggest revisions.
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